
Beagle™ Protocol Analyzers

The Beagle™ Protocol Analyzers are non-intrusive bus
monitors which allow developers to see and analyze serial bus
data in real time as it appears on the bus. All Beagle analyzers
feature:

• Monitor packets in real-time as they appear on the bus
• High-speed USB up-link to analysis computer
• Windows, Linux, and Mac OS X compatible

Beagle USB 5000 SuperSpeed Protocol Analyzer v2
Features

• Non-intrusive super-, high-, full-, and low-speed USB
monitoring

• 2 GB on-board hardware buffer, up to 4 GB supported
• Digital inputs and outputs for synchronizing with external logic
• Packet-level timing down to 2 ns resolution
• Advanced Match/Action triggers and filters
• Data scrambling, spread-spectrum clocking, and receiver

detection
• Cross-analyzer synchronization

Beagle USB 480 Protocol Analyzer Series Features

• Non-intrusive high-, full-, and low-speed USB monitoring
• Large 64 MB on-board hardware buffer (256 MB in Power

models)
• Digital inputs and outputs for synchronizing with external logic
• Packet-level timing with 16.6 ns resolution
• V Current/Voltage Monitoring (Power models only)
• Advanced Match/Action triggers and filters (Power model

Ultimate Edition only)

Beagle USB 12 Protocol Analyzer Features

• Non-intrusize full-, low-speed USB monitoring (12 and
1.5 Mbps)

• Bit-level timing with 21 ns resolution

Beagle {{i2c]]}}/SPI/MDIO Protocol Analyzer Features

• Non-intrusize {i2c]] monitoring up to 4 MHz
• Non-intrusize SPI monitoring up to 24 MHz
• Non-intrusize MDIO monitoring up to 2.5 MHz
• User selectable bit-level timing (up to 20 ns resolution)

Supported products:

Beagle Protocol Analyzers
User Manual v5.10
November 27, 2013

BUS

1 General Overview

1.1 USB Background

1.1.1 USB History

Universal Serial Bus (USB) is a standard interface for connecting peripheral devices to a
host computer. The USB system was originally devised by a group of companies
including Compaq, Digital Equipment, IBM, Intel, Microsoft, and Northern Telecom to
replace the existing mixed connector system with a simpler architecture.

USB was designed to replace the multitude of cables and connectors required to
connect peripheral devices to a host computer. The main goal of USB was to make the
addition of peripheral devices quick and easy. All USB devices share some key
characteristics to make this possible. All USB devices are self-identifying on the bus. All
devices are hot-pluggable to allow for true Plug'n'Play capability. Additionally, some
devices can draw power from the USB which eliminates the need for extra power
adapters.

To ensure maximum interoperability the USB standard defines all aspects of the USB
system from the physical layer (mechanical and electrical) all the way up to the software
layer. The USB standard is maintained and enforced by the USB Implementers Forum
(USB-IF). USB devices must pass a USB-IF compliance test in order to be considered in
compliance and to be able to use the USB logo.

USB 1.0 was first introduced in 1996, but was not adopted widely until 1998 with
USB 1.1. In 2000, USB 2.0 was released and has since become the de facto standard
for connecting devices to computers and beyond. In 2008, the USB specification was
expanded with USB 3.0, also known as SuperSpeed USB. USB 3.0 represents a
significant change in the underlying operation of USB. To simplify the experience for the
user, USB 3.0 has been designed to be plug-n-play backwards compatible with USB 2.0.

USB 3.0 specification include a number of significant changes including:

• Higher data transfer rate (up to 5 Gbps)

• Increased bus power and current draw

• Improved power management

• Full duplex data communications

• Link Training and Status State Machine (LTSSM)

• Interrupt driven, instead of polling

Beagle Protocol Analyzer User Manual

2

• Streaming interface for more efficient data transfers

As of 2010, the USB standard specifies different flavors of USB: low-speed, full-speed,
high-speed, and SuperSpeed. USB-IF has also released additional specs that expand
the breadth of USB. These are On-The-Go (OTG) and Wireless USB. Although beyond
the scope of this document, details on these specs can be found on the USB-IF website.

1.1.2 Architectural Overview

USB is a host-scheduled, token-based serial bus protocol. USB allows for the connection
of up to 127 devices on a single USB host controller. A host PC can have multiple host
controllers which increases the maximum number of USB devices that can be connected
to a single computer.

Devices can be connected and disconnected at will. The host PC is responsible for
installing and uninstalling drivers for the USB devices on an as-needed basis.

A single USB system comprises of a USB host and one or more USB devices. There can
also be zero or more USB hubs in the system. A USB hub is special class of device. The
hub allows the connection of multiple downstream devices to an upstream host or hub.
In this way, the number of devices that can be physically connected to a computer can
be increased.

A USB device is a peripheral device that connects to the host PC. The range of
functionality of USB devices is ever increasing. The device can support either one
function or many functions. For example a single multi-function printer may present
several devices to the host when it is connected via USB. It can present a printer device,
a scanner device, a fax device, etc.

All the devices on a single USB must share the bandwidth that is available on the bus. It
is possible for a host PC to have multiple buses which would all have their own separate
bandwidth. Most often, the ports on most motherboards are paired, such that each bus
has two downstream ports.

Beagle Protocol Analyzer User Manual

3

Figure 1 : Sample USB Bus Topology.
A USB can only have a single USB host device. This host
can support up to 127 different devices on a single port.
There is an upper limit of 7 tiers of devices which means
that a maximum of 5 hubs can be connected inline.

The USB has a tiered star topology (Figure 1). At the root tier is the USB host. All
devices connect to the host either directly or via a hub. According to the USB spec, a
USB host can only support a maximum of seven tiers.

USB 2.0 Specific Architecture

Beagle Protocol Analyzer User Manual

4

Figure 2 : USB Broadcast
A USB 2.0 host broadcasts information to all the devices
below it. Low-speed and high-speed enabled devices will
only see traffic at their respective speeds. Full-speed
devices can see both their speed and low-speed traffic.

USB 2.0 works through a unidirectional broadcast system. When a host sends a packet,
all downstream devices will see that traffic. If the host wishes to communicate with a
specific device, it must include the address of the device in the token packet. Upstream
traffic (the response from devices) are only seen by the host or hubs that are directly on
the return path to the host.

There are, however, a few caveats when dealing with devices that are of different
speeds. Low-speed and high-speed devices are isolated from traffic at speeds other
then their own. They will only see traffic that is at their respective speeds. Referring to
Figure 2, this means that downstream traffic to device H1 will be seen by device H2 (and
vice versa). Also, downstream traffic to device L1 will be seen by L2 (and vice versa).
However, full-speed devices can see traffic at its own speed, as well as low-speed traffic,
using a special signaling mode dubbed low-speed-over-full-speed. This means that
downstream traffic to F1 will be seen by F2 (and vice versa) with standard full-speed
signaling, and downstream traffic to either L1 or L2 will also be seen by both F1 and F2
through the special low-speed-over-full-speed signaling.

USB 3.0 Specific Architecture

USB 3.0 marks a significant change from the existing USB infrastructure and affects the
protocol at nearly all levels. The major features of USB 3.0 will be covered briefly in this
datasheet. For detailed information please consult the USB specifications from the USB-
IF.

USB 3.0 Physical Interface

Due to limitations of the differential signaling of USB 2.0, in order to be able to support
5 Gbps data communications, the physical interface has been upgraded. In addition to
the normal USB 2.0 signals, USB 3.0 cables and connectors have two additional pairs of
differential signals: one pair for transmit and one pair for receive, as seen in Figure 3.

Beagle Protocol Analyzer User Manual

5

Figure 3 : USB 3.0 Cable
Cross-section of a USB 3.0 cable. Image courtesy of USB
Implementers Forum

These two additional pairs allow for full-duplex communication over USB 3.0. Since the
original USB 2.0 lines are unchanged, USB 2.0 communications can occur in parallel to
USB 3.0.

USB 3.0 Power

Many of the key changes in USB 3.0 involve power and power management of USB
devices.

USB 3.0 Power Distribution

The amount of power available to USB devices has been increased in USB 3.0. For
unconfigured devices, 150 mA of power is available, compared with only 100 mA of
power in USB 2.0. 150 mA is considered one unit load. Configured devices are able to
draw up to 6 unit loads, or 900 mA, a significant increase from the 500 mA available in
USB 2.0. The added power allows for a broader range of devices to be bus-powered.

USB 3.0 Power Management

Beagle Protocol Analyzer User Manual

6

USB 3.0 provides better power management facilities to use power more efficiently, and
to help reduce overall power consumption.

Link-level power management allows the host or device to initiate a transition to a lower-
level power state. There are three low power states available that are shown in Figure 4.

In USB 3.0, there is no longer periodic device polling and packets are no longer
broadcast on the bus. It is now possible for devices to enter low-power states when idle
in USB 3.0 because they no longer have to manage the reception of these packets.

Low-power levels are configurable on the device level and the function level. A device
can suspend all or some of this functionality when it is idle, therefore reducing its power
consumption.

With Latency Tolerance Messaging, devices can report their latency tolerance to the
host, allowing the host system to enter lower power states without negatively affecting
the USB devices on the bus.

USB 3.0 Physical Layer

In USB 3.0, the physical layer specifies the electrical characteristics of SuperSpeed USB
signals how information is scrambled and encoded, and special signal sequences used
by other layers.

Here is a brief overview of some of the new technologies specific to SuperSpeed USB.

Receiver Termination

USB 3.0 receivers terminate the transmission line by placing a small resistor to ground.
Transmitters will check for this termination resistor on the receiver as a way for detecting
the presence of a USB 3.0 receiver.

Data Scrambling

The physical layer uses bit scrambling to reduce electrical interference problems on the
lines. However, it is possible for a transmitter to disable this feature.

8b/10b encoding

8b/10b encoding maps 8-bit symbols to 10-bit symbols with the purpose of keeping a low
disparity while continuing to have enough edge transitions for clock recovery.

Disparity is kept low by taking advantage of the increased number space that 10b has to
offer. Since all the 8b values would only take a subset of the 10b number space, multiple
10b symbols can be used encode a single 8b value. Often times, two different 10b
symbols will be used to encode an 8b value, where the two 10b symbols have different
number of 1s and 0s. The 10b symbol that is chosen to be sent will minimize the existing
disparity on the line, with the goal of having a net 50/50 distribution of 1s and 0s. For

Beagle Protocol Analyzer User Manual

7

example, if a line has a running disparity of +2 1s, the next symbol on the line will have a
bit pattern that has more 0s.

In addition, the increased number space allows for the use of certain control symbols,
called K symbols which do not map to any 8b data value. USB 3.0 uses these control
symbols for a number of purposes including: packet framing, elastic buffer mitigation,
and data scrambler control.

Training Sequences

To accomodate for the various signaling characteristics of all manufactured transmitters,
cables, and connectors, SuperSpeed receivers must be trained upon connection to a
transmitter. This training sequence helps configure the receiver equalization, polairty,
and data scrambler in order to establish a successful communications link.

Spread Spectrum Clocking

SuperSpeed USB employs spread spectrum clocking on its signaling. The advantage of
this is that rather than radiating all energy in a small frequency band at a high level, a
spread spectrum clock spreads its energy in a slightly larger frequency band, which
reduces the peak level at any specific frequency. This is done to help meet EMC
regulations.

Low-Frequency Periodic Signaling (LFPS)

LFPS signal is a side-band of communication sent on the normal SuperSpeed data lines
at a lower frequency (10-50 MHz instead of 5 Gbps). This side-band helps to manage
signal initiation and low power management on the bus on a link between two ports.

Elastic Buffer

USB 3.0 devices do not share the exact same clock source. Therefore they must be able
to tolerate small variations between reference clocks on the transmitter and receiver. To
compensate for such differences, receivers implement elasticity buffers that add or throw
away dummy data, called SKP ordered sets, based on the state of the buffer at the time
that the SKP ordered sets were received.

USB 3.0 Link Layer

The Link Layer is responsible for establishing and maintaining a reliable channel
between a host and a device. There are a number of key concepts in this layer:

Link Commands

Link Commands are used to ensure the successful transfer of a packet, link flow control,
and link power management.

Link Training and Status State Machine (LTSSM)

Beagle Protocol Analyzer User Manual

8

LTSSM is a state machine that defines link connectivity and link power management.
LTSSM consists of 12 states: 4 operational link states (U0, U1, U2, U3), 4 link
initialization and training states (Rx.Detect, Polling, Recovery, Hot Reset), 2 link test
states (Loopback and Compliance Mode), SS Inactive (which is a link error state where
USB 3.0 is non-operable) and SS.Disabled (where the SuperSpeed bus is disabled and
operates as USB 2.0 only). Figure 4 maps out all the states of LTSSM and defines how
the link transitions between states.

Beagle Protocol Analyzer User Manual

9

Figure 4 : LTSSM State Machine
The Link Training and Status State Machine (LTSSM) is the
core of the USB 3.0 link layer and defines link connectivity
and link power management states states and transitions.
Image courtesy of USB Implementers Forum

In order for a USB 3.0 device to enter the U0 operational link state, the link must be
trained in order to synchronize the transmitter and receiver between the host and device.

Key LTSSM link states:

Rx.Detect

This is the initial power-on state where a transmitter checks for proper receiver
termination to determine if its SuperSpeed partner is present on the bus. When the
termination is detected, link training can begin.

Polling

During the polling state, two link partners train the link to synchronize their
communications in preparation for data transmission.

U0

This is the normal operational state where SuperSpeed signaling is enabled and 5Gb
packets are transmitted and received.

U1, U2, U3

These are low-power states where no 5Gb packets are transmitted. U1, U2, and U3
have increasingly longer wakeup times into U0, and thus allow transmitters to go into
increasingly deeper sleeps.

USB 3.0 Protocol Layer

The USB 3.0 protocol layer manages the flow of data between devices, and specifies
how the different packet structures are used. USB 3.0 specific packets are shown in
Figure 17.

1.1.3 Theory of Operations

This introduction is a general summary of the USB spec. Total Phase strongly
recommends that developers consult the USB specification on the USB-IF website for
detailed and up-to-date information.

Beagle Protocol Analyzer User Manual

10

USB 2.0 Connectors

Figure 5 : USB Cable
A USB cable has two different types of connectors:
"A" and "B". The "A" connectors connect upstream towards
the Host and B connectors connect downstream to the
Devices.

USB cables have two different types of connectors: "A" and "B". "A" type connectors
connect towards the host or upstream direction. "B" connectors connect to downstream
devices, though many devices have captive cables eliminating the need for "B"
connectors. The "A" and "B" connectors are defined in the USB spec to prevent
loopbacks in the bus. This prevents a host from being connected to a host, or conversely
a device to a device. It also helps enforce the tiered star topology of the bus. USB hubs
have one "B" port and multiple "A" ports which makes it clear which port connects to the
host and which to downstream devices.

The USB spec has been expanded to include Mini-A and Mini-B connectors to support
small USB devices. The USB On-The-Go (OTG) spec has introduced the Micro-A plug,
Micro-B plug and receptacle, and the Micro-AB receptacle to allow for device-to-device
connections. (The previous Mini-A plug and Mini-AB receptacle have now been
deprecated.)

USB 3.0 Connectors

The new USB 3.0 connectors serve two purposes. First, the connectors must be capable
of physically interfacing with USB 3.0 signals to provide the ability to send and receive
SuperSpeed USB data. Secondly, the connectors must be backwards compatible with
USB 2.0 cables.

Beagle Protocol Analyzer User Manual

11

Figure 6 : USB 3.0 Standard-A Connector
USB 3.0 Standard-A plug and receptacle. Image courtesy of
USB Implementers Forum

The USB 3.0 Standard-A connector (Figure 6) is very similar in appearance to the
USB& 2.0 Standard-A connector. However, the USB 3.0 Standard-A connector and
receptacle have 5 additional pins: a differential pair for transmitting data, a differential
pair for receiving data, and the drain. USB 3.0 Standard-A plugs and receptacles are
often colored blue to help differentiate it from USB 2.0.

The USB 3.0 Standard-A connector has been designed to be able to be plugged into
either a USB t;2.0 or USB 3.0 receptacle. Similarly, the USB 3.0 Standard-A receptacle
is designed to accept both the USB 3.0 and the USB ;2.0 Standard-A plugs.

Figure 7 : USB 3.0 Standard-B Connector
USB 3.0 Standard-B plug and receptacle. Image courtesy of
USB Implementers Forum

The USB 3.0 Standard-B connector (Figure 7) is similar to the USB ;2.0 Standard-B
connector, with an additional structure at the top of the plug for the additional USB 3.0
pins. Due to the distinct appearance of the USB 3.0 Standard-B plug and receptacle,
they do not need to be color coded, however many manufacturers color them blue to
match the Standard-A connectors.

Beagle Protocol Analyzer User Manual

12

Given the new geometry, the USB 3.0 Standard-B plug is only compatible with USB 3.0
Standard-B receptacles. Conversely, the USB 3.0 Standard-B receptacle can accept
either a USB 2.0 or USB ;3.0 Standard-B plug.

Figure 8 : USB 3.0 Powered-B Connector
USB 3.0 includes a variant of the Standard-B connectors
which has two additional conductors to provide power to
USB adapters. Image courtesy of USB Implementers Forum

A Powered-B variant of the Standard-B connector (Figure 8) is also defined by the
USB 3.0 specification. The Powered-B connector has two additional pins to provide
power to a USB adapter without the need for an external power supply.

Figure 9 : USB 3.0 Micro-A Connector
USB 3.0 Micro-A plug and receptacle. Image courtesy of
USB Implementers Forum

Beagle Protocol Analyzer User Manual

13

Figure 10 : USB 3.0 Micro-B Connector
USB 3.0 Micro-B plug and receptacle. Image courtesy of
USB Implementers Forum

USB 3.0 also specifies Micro-A (Figure 9) and Micro-B (Figure 10) connectors. Given
the small size of the original USB 2.0 micro connectors, it was not possible to add the
USB 3.0 signals in the same form factor. The USB 3.0 micro plugs cannot interface with
USB 2.0 receptacles, but USB 2.0 micro plugs can interface with USB 3.0 receptacles.

USB 2.0 Signaling

All USB devices are connected by a four-wire USB cable. These four lines are , GND,
and the twisted pair: D+ and D-. USB uses differential signaling on the two data lines.
There are four possible digital line states that the bus can be in: single-ended zero
(SE0), single-ended one (SE1), J, and K. The single-ended line states are defined the
same regardless of the speed. However, the definitions of the J and K line states change
depending on the bus speed. Their definitions are described in Table 1. All data is
transmitted through the J and K line states. An SE1 condition should never be seen on
the bus, except for allowances during transitions between the other line states.

Table 1 : Differential Signal Encodings

D+ D-

Single-ended zero (SE0) 0 0

Single-ended one (SE1) 1 1

Low-speed J 0 1

Low-speed K 1 0

High-/Full-speed J 1 0

High-/Full-speed K 0 1

The actual data on the bus is encoded through the line states by a nonreturn-to-zero-
inverted (NRZI) digital signal. In NRZI encoding, a digital 1 is represented by no change
in the line state and a digital 0 is represented as a change of the line state. Thus, every

Beagle Protocol Analyzer User Manual

14

time a 0 is transmitted the line state will change from J to K, or vice versa. However, if a
1 is being sent the line state will remain the same.

USB has no synchronizing clock line between the host and device. However, the
receiver can resynchronize whenever a valid transition is seen on the bus. This is
possible provided that a transition in the line state is guaranteed within a fixed period of
time determined by the allowable clock skew between the receiver and transmitter. To
ensure that a transition is seen on the bus within the required time, USB employs bit
stuffing. After 6 consecutive 1s in a data stream (i.e. no transitions on the D+ and D-
lines for 6 clock periods), a 0 is inserted to force a transition of the line states. This is
performed regardless of whether the next bit would have induced a transition or not. The
receiver, expecting the bit stuff, automatically removes the 0 from the data stream.

USB 3.0 Signaling

USB 3.0 signaling occurs on two dedicated pairs of differential pairs for transmission and
reception. Due to the full-duplex nature of the USB 3.0 bus, the bus operates differently
from a USB 2.0 bus.

USB 3.0 continues to use the concept of endpoints, pipes, and the four basic types of
transfers: control, interrupt, bulk, and isochronous. USB 3.0 still uses three-part
transaction of Token, Data, and Handshake, but the components are used differently. In
the case of OUTs, the token is now incorporated in the data packet. In the case of INs,
the token is replaced by a handshake.

There are also a number of significant changes in the USB 3.0 protocol layer to improve
the efficiency of data transfers.

Unicast Communications

Packets are no longer broadcast on the USB bus, to allow for lower power states. In
USB 2.0, packets are broadcast, consequently every device must decode the packet to
determine if it needs to respond. In USB 3.0, packets are unicast, meaning that packets
are sent on a directed path between the host and device as specified by routing
information in the packet.

There is one exception: Isochronous Timestamp Packets (ITP) are broadcast on the bus,
and provide timing information to all devices in lieu of Start of Frame packets. See
Figure 20 for more information about ITP packets.

Asynchronous Notifications

Device polling has been eliminated in USB 3.0 to reduce bus overhead and allow for
lower power states. When data is requested from a device and it is not able to respond,
it can send a Not Ready packet (NRDY). When the device has freed its resources and
can service the data request, it issues an Endpoint Ready packet (ERDY) informing the
host that it can send another request for data.

Data Streaming

Beagle Protocol Analyzer User Manual

15

To improve data transfer performance, USB 3.0 introduces streams for bulk transfer
endpoints. Streams are a protocol-supported method of multiplexing multiple data
streams through a standard bulk pipe.

Bus Speed

The bus speed determines the rate at which bits are sent across the bus. There are
currently four speeds at which wired USB operates: low-speed (1.5 Mbps), full-speed
(12 Mbps), high-speed (480 Mbps), and SuperSpeed (5 Gbps). In order to determine the
bus speed of a full-speed or low-speed device, the host must simply look at the idle state
of the bus. Full-speed devices have a pull-up resistor on the D+ line, whereas low-speed
devices have a pull-up resistor on the D- line. Therefore, if the D+ line is high when idle,
then full-speed connectivity is established. If the D- line is high when idle, then low-
speed connectivity is in effect. A full-speed device does not have to be capable of
running at low-speed, and vice versa. A full-speed host or hub, however, must be
capable of communicating with both full-speed and low-speed devices.

With the introduction of high-speed USB, high-speed hosts and hubs must be able to
communicate with devices of all speeds. Additionally, high-speed devices must be
backward compatible for communication at full-speed with legacy hosts and hubs. To
facilitate this, all high-speed hosts and devices initially operate at full-speed and a high-
speed handshake must take place before a high-speed capable device and a high-speed
capable host can begin operating at high-speed. The handshake begins when a high-
speed capable host sees a full-speed device attached. Because high-speed devices
must initially operate at full-speed when first connected, they must pull the D+ line high
to identify as a full-speed device. The host will then issue a reset on the bus and wait to
see if the device responds with a Chirp K, which identifies the device as being high-
speed capable. If the host does not receive a Chirp K, it quits the high-speed handshake
sequence and continues with normal full-speed operation. However, if the host receives
a Chirp K, it responds to the device with alternating pairs of Chirp K's and Chirp J's to tell
the device that the host is high-speed capable. Upon recognizing these alternating pairs,
the device switches to high-speed operation and disconnects its pull-up resistor on the D
+ line. The high-speed connection is now established and both the host and the device
begin communicating at high-speed. See the USB specification for more details on the
high-speed handshake.

To accommodate high-speed data-rates and avoid transceiver confusion, the signaling
levels of high-speed communication is much lower than that of full and low-speed
devices. Full and low-speed devices operate with a logical high level of 3.3 V on the D+
and D- lines. For high-speed operation, signaling levels on the D+ and D- lines are
reduced to 400 mV. Because the high-speed signaling levels are so low, full and low-
speed transceivers are not capable of seeing high-speed traffic.

To accommodate the high-speed signaling levels and speeds, both hosts and devices
use termination resistors. In addition, during the high-speed handshake, the device must
release its full-speed pull-up resistor. But during the high-speed handshake, often times
the host will activate its termination resistors before the device releases its full-speed

Beagle Protocol Analyzer User Manual

16

pull-up resistor. In these situations the host may not be able to pull the D+ line below the
threshold level of its high-speed receivers. This may cause the host to see a spurious
Chirp J (dubbed a Tiny J) on the lines. This is an artifact on the bus due to the voltage
divider effect between the devices 1.5 Kohm pull-up resistor and the host's 45 ohm
termination resistor. Hosts and devices must be robust against this situation. Once the
device has switched to high-speed operation the Tiny J will no longer be present, since
the device will have released its pull-up resistor.

With USB 3.0, a separate SuperSpeed USB channel co-exists in parallel with the normal
USB 2.0 bus. It is important to point out that SuperSpeed USB is a full-duplex bus, thus
both the host and the device act as a transmitter and receiver. In order to communicate
over USB 3.0, each transmitter must detect the termination on the receiver side. If the
termination is not detected, the host will downgrade its communications to USB 2.0. If
the termination is detected, link training begins so that the receiver can synchronize with
the transmitter. Once the link is established, the link enters U0 and data communications
can begin.

Endpoints and Pipes

The endpoint is the fundamental unit of communication in USB. All data is transferred
through virtual pipes between the host and these endpoints. All communication between
a USB host and a USB device is addressed to a specific endpoint on the device. Each
device endpoint is a unidirectional receiver or transmitter of data; either specified as a
sender or receiver of data from the host.

A pipe represents a data pathway between the host and the device. A pipe may be
unidirectional (consisting of only one endpoint) or bidirectional (consisting of two
endpoints in opposite directions).

A special pipe is the Default Control Pipe. It consists of both the input and output
endpoints 0. It is required on all devices and must be available immediately after the
device is powered. The host uses this pipe to identify the device and its endpoints and to
configure the device.

Endpoints are not all the same. Endpoints specify their bandwidth requirements and the
way that they transfer data. There are four transfer types for endpoints:

Control

Non-periodic transfers. Typically, used for device configuration, commands, and status
operation.

Interrupt

This is a transaction that is guaranteed to occur within a certain time interval. The device
will specify the time interval at which the host should check the device to see if there is
new data. This is used by input devices such as mice and keyboards.

Isochronous

Beagle Protocol Analyzer User Manual

17

Periodic and continuous transfer for time-sensitive data. There is no error checking or
retransmission of the data sent in these packets. This is used for devices that need to
reserve bandwidth and have a high tolerance to errors. Examples include multimedia
devices for audio and video.

Bulk

General transfer scheme for large amounts of data. This is for contexts where it is more
important that the data is transmitted without errors than for the data to arrive in a timely
manner. Bulk transfers have the lowest priority. If the bus is busy with other transfers,
this transaction may be delayed. The data is guaranteed to arrive without error. If an
error is detected in the CRCs, the data will be retransmitted. Examples of this type of
transfer are files from a mass storage device or the output from a scanner.

USB 2.0 Packets

All USB packets are prefaced by a SYNC field and then a Packet Identifier (PID) byte.
Packets are terminated with an End-of-Packet (EOP).

The SYNC field, which is a sequence of KJ pairs followed by 2 K's on the data lines,
serves as a Start of Packet (SOP) marker and is used to synchronize the devices
transceiver with that of the host. This SYNC field is 8 bits long for full/low-speed and
32 bits long for high speed.

The EOP field varies depending on the bus speed. For low- or full-speed buses, the EOP
consists of an SE0 for two bit times. For high-speed buses, because the bus is at SE0
when it is idle, a different method is used to indicate the end of the packet. For high-
speed, the transmitter induces a bit stuff error to indicate the end of the packet. So if the
line state before the EOP is J, the transmitter will send 8-bits of K. The exception to this
is the high-speed SOF EOP, in which case the high-speed EOP is extended to 40-bits
long. This is done for bus disconnect detection.

The PID is the first byte of valid data sent across the bus, and it encodes the packet
type. The PID may be followed by anywhere from 0 to 1026 bytes, depending on the
packet type. The PID byte is self-checking; in order for the PID to be valid, the last 4 bits
must be a ones complement of the first 4 bits. If a received PID fails its check, the
remainder of the packet will be ignored by the USB device.

There are four types of PID which are described in Table 2.

Table 2 : USB Packet Types

PID Type PID Name Description

Token OUT Host to device transfer

IN Device to Host transfer

SOF Start of Frame marker

Beagle Protocol Analyzer User Manual

18

SETUP Host to device control transfer

Data DATA0 Data packet

DATA1 Data packet

DATA2 High-Speed Data packet

MDATA Split/High-Speed Data packet

Handshake ACK The data packet was received error free

NAK Receiver cannot accept data
or the transmitter could not send data

STALL Endpoint halted or control pipe request is not supported

NYET No response yet

Special PRE Preamble to full-speed hub for low-speed traffic

ERR Error handshake for Split Transaction

SPLIT Preamble to high-speed hub for low/full-speed traffic

PING High-speed flow control token

EXT Protocol extension token

The format of the IN, OUT, and SETUP Token packets is shown in Figure 11. The format
of the SOF packet is shown in Figure 12. The format of the Data packets is shown in
Figure 13. Lastly, the format of the Handshake packets is shown in Figure 14.

Figure 11 (above) : Token Packet Format

Figure 12 (above): Start-Of-Frame (SOF) Packet Format

Beagle Protocol Analyzer User Manual

19

Figure 13 (above) : Data Packet Format

Figure 14 (above) : Handshake Packet Format

Data Transactions

Data transactions occur in three phases: Token, Data, and Handshake.

Figure 15 : The Three Phases of a USB Transfer

Beagle Protocol Analyzer User Manual

20

All communication on the USB is host-directed. In the Token phase, the host will
generate a Token packet which will address a specific device/endpoint combination. A
Token packet can be IN, OUT, or SETUP.

IN The host is requesting data from the addressed dev/ep.

OUT The host is sending data to the addressed dev/ep.

SETUP The host is transmitting control information to the device.

In the data phase, the transmitter will send one data packet. For IN requests, the device
may send a NAK or STALL packet during the data phase to indicate that it isnt able to
service the token that it received.

Finally, in the Handshake phase the receiver can send an ACK, NAK, or STALL indicating
the success or failure of the transaction.

All of the transfers described above follow this general scheme with the exception of the
Isochronous transfer. In this case, no Handshake phase occurs because it is more
important to stream data out in a timely fashion. It is acceptable to drop packets
occasionally and there is no need to waste time by attempting to retransmit those
particular packets.

Control Transfers

Control transfers are a group of transactions that occur on the control pipe. The control
pipe is the only type of pipe which is allowed to use SETUP transactions. A control
transfer consists of at least two stages called the Setup Stage and the Status Stage.
Optionally, control transfers may also include a Data Stage.

The Setup Stage always consists of a single SETUP transaction. This transaction
contains 8 bytes of data of which some of the bytes specify the length of the control
transfer and its direction. The direction may either be host-to-device or device-to-host. If
the length is not zero, then the control transfer will have a Data Stage. The Data Stage is
always comprised of either IN transactions or OUT transactions depending on the
direction of the control transfer. The Data Stage will never be made a mix of the two.
Lastly, the Status Stage consists of an IN transaction if the control transfer was a host-
to-device, or a OUT transfer was a device-to-host. The Status Stage may end in an ACK if
the function completed successfully, or STALL if the function had an error. It is also
possible to see a transaction STALL in the Data Stage if the device is unable to send or
receive the requested data.

Polling Transactions

It is possible that when a host requests data or sends data that the device will not be
able to service the request. This could occur if the device has no new information to
provide the host or is perhaps too busy to send/receive any data. In these situations the
device will NAK the host. If the data transfer is a Control or Bulk transfer, the host will

Beagle Protocol Analyzer User Manual

21

retry the transaction. However, if it is Isochronous or Interrupt transfer, it will not retry the
transaction.

On a full or low-speed bus, if the transaction is repeated, it is repeated in its entirety.
This is true regardless of the direction of the data transfer. If the host is requesting
information, it will continue to send IN tokens until the device sends data. Until then, the
device responds with a NAK, leading to the multitude of IN + NAK pairs that are
commonly encountered on a bus. This does not have much consequence as an IN
token is only 3 bytes and the NAK is only 1 byte. However, if the host is transmitting data
there is the potential for graver consequences. For example, if the host attempted to
send 64 bytes of data to a device, but the device responded with a NAK, the host will
retry the entire data transaction. This requires sending the entire 64-byte data payload
repeatedly until the device responds with an ACK. This has the potential to waste a
significant amount of bandwidth. It is for this reason that high-speed hosts have an
additional feature when the device signals the inability to accept any more data.

When a high-speed host receives a NAK after transmitting data, instead of retransmitting
the entire transaction, it simply sends a 3-byte PING token to poll the device and
endpoint in question. (Alternatively, if the device responds to the OUT + DATA with a
NYET handshake, it means that the device accepted the data in the current transaction
but is not ready to accept additional data, and the host should PING the device before
transmitting more data.) The host will continue to PING the device until it responds with
an ACK, which indicates to the host that it is ready to receive information. At that point,
the host will transmit a packet in its entirety.

Hub Transactions

Hubs make it possible to expand the number of possible devices that can be attached to
a single host. There are two types of hubs that are commercially available for wired USB:
full-speed hubs and high-speed hubs. Both types of hubs have mechanisms for dealing
with downstream devices that are not of their speed.

Full-speed hubs can, at most, transmit at 12 Mbps. This means that all high-speed
devices that are plugged into a full-speed hub are automatically downgraded to full-
speed data rates. On the other hand, low-speed devices are not upgraded to full-speed
data rates. In order to send data to low-speed devices, the hub must actually pass
slower moving data signals to those devices. The host (or high-speed hub) is the one
that generates these slower moving signals on the full-speed bus. Ordinarily the low-
speed ports on the hub are quiet. When a low-speed packet needs to be sent
downstream, it is prefaced with a PRE PID. This opens up the low-speed ports. Note that
the PRE is sent at full-speed data rates, but the following transaction is transmitted at
low-speed data rates.

High-speed hubs only communicate at 480 Mbps with high-speed host. They do not
downgrade the link between the host and hub to slower speeds. However, high-speed
hubs must still deal with slower devices being downstream of them. High-speed hubs do
not use the same mechanism as full-speed hubs. There would be a tremendous cost on
bandwidth to other high-speed devices on the bus if low-speed or full-speed signaling
rates were used between the host and the hub of interest. Thus, in order to save

Beagle Protocol Analyzer User Manual

22

bandwidth, high-speed hosts do not send the PRE token to high-speed hubs, but rather a
SPLIT token. The SPLIT token is similar to the PRE in that it indicates to a hub that the
following transaction is for a slower speed device, however the data following the SPLIT
is transmitted to the hub at high-speed data rates and does not choke the high-speed
bus.

Figure 16 : Split Bulk Transactions
When full/low-speed USB traffic is sent through a high-
speed USB hub, the transactions are preceded by a SPLIT
token to allow the hub to asynchronously handle the full/
low-speed traffic without blocking other high-speed traffic
from the host. In this example, bulk packets for a full-speed
device are being sent through the high-speed hub. Multiple
CSPLIT + IN + NYET transactions can occur on the bus
until the high-speed hub is ready to return the DATA from
the downstream full/low-speed device.

Although all SPLIT transactions have the same PID, there are two over-arching types of
SPLITs: Start SPLITs (SSPLIT) and Complete SPLITs (CSPLIT). SSPLITs are only
used the first time that the host wishes to send a given transaction to the device.
Following that, it polls the hub for the devices response with CSPLITs. The hub may
respond many times with NYET before supplying the host with the devices response.
Once this transaction is complete, it will begin the next hub transaction with an SSPLIT.
Figure 16 illustrates an example of hub transaction.

Start-of-Frame Transactions

Start-of-Frame (SOF) transactions are issued by the host at precisely timed intervals.
These tokens do not cause any device to respond, and can be used by devices for
timing reasons. The SOF provides two pieces of timing information. Because of the
precisely timed intervals of SOFs, when a device detects an SOF it knows that the interval

Beagle Protocol Analyzer User Manual

23

time has passed. All SOF s also include a frame number. This is an 11-bit value that is
incremented on every new frame.

SOFs are also used to keep devices from going into suspend. Devices will go into
suspend if they see an idle bus for an extended period of time. By providing SOF s, the
host is issuing traffic on the bus and keeping devices from entering their suspended
state.

Full-speed hosts will send 1 SOF every millisecond. High-speed hosts divide the frame
into 8 microframes, and send an SOF at each microframe (i.e., every 125 microseconds).
However, the high-speed hub will only increment the frame number after an entire frame
has passed. Therefore, a high-speed host will repeat the same frame number 8 times
before incrementing it.

Low-speed devices are never issued SOFs as it would require too much bandwidth on an
already slower-speed bus. Instead, to keep low-speed devices from going into suspend,
hosts will issue a keep-alive every millisecond. These keep-alives are short SE0 events
on the bus that last for approximately 1.33 microseconds. They are not interpreted as
valid data, and have no associated PID.

Extended Token Transactions

The new Link Power Management addendum to the USB 2.0 Specification has
expanded the number of PIDs through the use of the previously reserved PID, 0xF0. The
extended token format is a two phase transaction that begins with a standard token
packet that has the EXT PID. Following this packet is the extended token packet, which
takes a similar form. It begins with an 8-bit SubPID and ends with a 5-bit CRC, however
the 11 remaining bits in the middle will have different meaning depending on the type of
SubPID.

Figure 17 (above) : Extended Token Transaction
In an extended token transaction, the token phase of the
transaction has two token packets. The first packet uses the
EXT PID. The content of the second packet will depend on
the particular SubPID specification. The subsequent Data
and Handshake phases will depend on the value of the
SubPID as well.

Following this token phase, the device will respond with the appropriate data or
handshake, depending on the protocol associated with that SubPID. Currently, the only
defined SubPID is for link power management (LPM). For more details, please refer to
the Link Power Management addendum.

Beagle Protocol Analyzer User Manual

24

USB 3.0 Packets

USB 3.0 supports the same types of data transfers: control, interrupt, bulk, and
isochronous. However the packet structure has changed to support the new features in
USB 3.0.

USB 3.0 General Packet Structures

Packets in USB 3.0 generally come in 3 different patterns.

Header Packet

Header Packets consist of three parts: header packet framing, packet header, and a link
control word. Note that "SHP" is a a K-symbol which stands for "start header packet".
The header is protected by CRC-16, and the link control word is protected by CRC-5.

Data Payload Packet

Data Payload Packets send application data and are protected by CRC-32. Note that
"SDP" stands for "start data packet payload".

Link Command Packet

Link Command Packets are used to control various link-specific features, including low
power states and flow control. A Link Command Packet atually consists of two identical
Link Command Words, where each Link Command Word is protected by a CRC-5. Note
that "SLC" stands for "start link command".

Link Management Packets (LMP)

Link Management Packets (LMP) are a type of header packet used to manage the link
between two ports (Figure 18). Because these packets are used to manage a single
link, they only travel between the two link partners and therefore require no addressing
information.

Beagle Protocol Analyzer User Manual

25

Figure 18 (above): Link Management Packet (LMP)
Link Management Packets are used to manage the link
between two link partners. Image courtesy of USB
Implementers Forum.

The LMP commands to manage a link are listed below. Please consult the USB 3.0
specifications for more details.

• Set Link Function

• U2 Inactivity Timeout

• Vendor Device Test

• Port Capability

• Port Configuration

• Port Configuration Response

Transaction Packets (TP)

Transaction Packets (TP) are a type of header packet used to control the flow of data
packets end-to-end between the host and device (Figure 19). Since these packets may
traverse a number of links, each TP has a route string which is used by hubs to route the
packet directly to the intended device.

Figure 19 (above) : Transaction Packet (TP)
Transaction Packets are used to control the flow of packets
between the host and device. Image courtesy of USB
Implementers Forum.

TPs do not contain application data and have a number of different subtypes:

• Acknowledgement (ACK)

• Not Ready (NRDY)

Beagle Protocol Analyzer User Manual

26

• Endpoint Ready (ERDY)

• STATUS

• STALL

• Device Notification (DEV_NOTIFICATION)

• PING

• PING_RESPONSE

Data Packets (DP)

Data Packets (DP) are used to transmit application data and are comprised of two parts:
a data packet header (DPH) and a data packet payload (DPP) (Figure 20).

Figure 20 : Data Packet (DP)
Data Packets are used to transmit application data between
the host and device. A Data Packet is composed of a Data
Packet Header (DPH) and the Data Packet Payload (DPP).
Image courtesy of USB Implementers Forum.

Since data is being sent between the host and device, DP packets have a route string to
direct it to intended device.

Isochronous Timestamp Packets (ITP)

Isochronous Timestamp Packets (ITP) are used to send timestamps to all devices for
synchronization (Figure 20). ITPs are the only packets that are broadcast by the host to
all active devices. Since this packet is broadcast, it does not require a route string.

Beagle Protocol Analyzer User Manual

27

Figure 20 : Isochronous Timestamp Packet (LMP)
Link Management Packets send timestamps to active
devices which is used for synchronization. Image courtesy
of USB Implementers Forum.

Only hosts are allowed to send ITPs, and only when the host port is already in the
U0 state. Devices are not required to respond to the ITP.

Enumeration and Descriptors

When a device is plugged into a host PC, the device undergoes Enumeration. This
means that the host recognizes the presence of the device and assigns it a unique 7-bit
device address. The host PC then queries the device for its descriptors, which contains
information about the specific device. There are various types of descriptors as outlined
below.

Beagle Protocol Analyzer User Manual

28

Figure 22 : USB Descriptors
Hierarchy of descriptors of a USB device. A device has a
single Device descriptor. The Device descriptor can have
multiple Configuration descriptors, but only a single one can
be active at a time. The Configuration descriptor can define
one or more Interface descriptors. Each of the Interface
descriptors can have one or more alternate settings, but
only one setting can be active at a time. The Interface
descriptor defines one or more Endpoints.

• Device Descriptor : Each USB device can only have a single Device Descriptor.
This descriptor contains information that applies globally to the device, such as
serial number, vendor ID, product ID, etc. The device descriptor also has
information about the device class. The host PC can use this information to help
determine what driver to load for the device.

• Configuration Descriptor : A device descriptor can have one or more configuration
descriptors. Each of these descriptors defines how the device is powered (e.g.
bus-powered or self-powered), the maximum power consumption, and what
interfaces are available in this particular setup. The host can choose whether to
read just the configuration descriptor or the entire hierarchy (configuration,
interfaces, and alternate interfaces) at once.

• Interface Descriptor : A configuration descriptor defines one or more interface
descriptors. Each interface number can be subdivided into multiple alternate
interfaces that help more finely modify the characteristics of a device. The host
PC selects particular alternate interface depending on what functions it wishes to
access. The interface also has class information which the host PC can use to
determine what driver to use.

• Endpoint Descriptor : An interface descriptor defines one or more endpoints. The
endpoint descriptor is the last leaf in the configuration hierarchy and it defines the
bandwidth requirements, transfer type, and transfer direction of an endpoint. For
transfer direction, an endpoint is either a source (IN) or sink (OUT) of the USB
device.

• String Descriptor : Some of the configuration descriptors mentioned above can
include a string descriptor index number. The host PC can then request the
unicode encoded string for a specified index. This provides the host with human

Beagle Protocol Analyzer User Manual

29

readable information about the device, including strings for manufacturer name,
product name, and serial number.

Device Class

USB devices vary greatly in terms of function and communication requirements. Some
devices are single-purpose, such as a mouse or keyboard. Other devices may have
multiple functionalities that are accessible via USB such as a printer/scanner/fax device.

The USB-IF Device Working Group defines a discreet number of device classes. The
idea was to simplify software development by specifying a minimum set of functionality
and characteristics that is shared by a group of devices and interfaces. Devices of the
same class can all use the same USB driver. This greatly simplifies the use of USB
devices and saves the end-user the time and hassle of installing a driver for every single
USB device that is connected to their host PC.

For example, input devices such as mice, keyboards and joysticks are all part of the HID
(Human Interface Device) class. Another example is the Mass Storage class which
covers removable hard drives and keychain flash disks. All of these devices use the
same Mass Storage driver which simplifies their use.

However, a device does not necessarily need to belong to a specific device class. In
these cases, the USB device will require its own USB driver that the host PC must load
to make the functionality available to the host.

On-The-Go (OTG)

The OTG supplement to the USB 2.0 spec provides methods for mobile devices to
communicate with each other, actively switch the role of host and device, and also
request sessions from each other when power to the USB is removed.

The initial role of host and device is determined entirely by the USB connector itself. All
OTG capable peripherals will have a 5-pin Micro-AB receptacle which can receive either
the Micro-A or Micro-B plug. If the peripheral receives the Micro-A plug, then it behaves
as the host. If it receives the Micro-B plug, then it behaves as the device. However, there
may be certain situations where a peripheral received the Micro-B plug, but needs to
behave as the host. Rather than request that the user swap the cable orientation, the
two peripherals have the ability to swap the roles of host and device through the Host
Negotiation Protocol (HNP).

The HNP begins when the A-device finishes using the bus and stops all bus activity. The
B-device detects this and will release its pull-up resistor. When the A-device detects the
SE0, it responds by activating its pull-up. Once the B-device detects this condition, the
B-device issues reset and begins standard USB communication as the host.

In order to conserve power, A-devices are allowed to stop providing power to the USB.
However, there could be situations where the B-device wants to use the bus and V is
turned off. It is for this reason that the OTG supplement describes a method for allowing

Beagle Protocol Analyzer User Manual

BUS

30

the B-device to request a session from the A-device. Upon successful completion of the
Session Request Protocol (SRP), the A-device will power the bus and continue standard
USB transactions.

The SRP is broken up into two stages. From a disconnected state, the B-device must
begin an SRP by driving one of its data lines high for a sufficient duration. This is called
data-line pulsing. If the A-device does not respond to this, the B-device will drive the V

 above a specified threshold and release it, thereby completing V pulsing. If the A-
device still does not begin a session, the B-device may start the SRP over again,
provided the correct initial conditions are met.

For more details on OTG, please see the On-The-Go Supplement to the USB 2.0
Specification .

1.1.4 References

• USB Implementers Forum

1.2 I C Background

1.2.1 I C History

When connecting multiple devices to a microcontroller, the address and data lines of
each devices were conventionally connected individually. This would take up precious
pins on the microcontroller, result in a lot of traces on the PCB, and require more
components to connect everything together. This made these systems expensive to
produce and susceptible to interference and noise.

To solve this problem, Philips developed Inter-IC bus, or I C, in the 1980s. I C is a low-
bandwidth, short distance protocol for on board communications. All devices are
connected through two wires: serial data (SDA) and serial clock (SCL).

Beagle Protocol Analyzer User Manual

BUS BUS

2

2

2 2

31

http://www.usb.org/

Figure 23 : Sample I C Implementation.
Regardless of how many slave units are attached to the I C
 bus, there are only two signals connected to all of them.
Consequently, there is additional overhead because an
addressing mechanism is required for the master device to
communicate with a specific slave device.

Because all commnication takes place on only two wires, all devices must have a unique
address to identify it on the bus. Slave devices have a predefined address, but the lower
bits of the address can be assigned to allow for multiples of the same devices on the
bus.

1.2.2 I C Theory of Operation

I C has a master/slave protocol. The master initiates the communication. Here is a
simplified description of the protocol. For precise details, please refer to the Philips I C
specification. The sequence of events are as follows:

1. The master device issues a start condition. This condition informs all the slave
devices to listen on the serial data line for their respective address.

2. The master device sends the address of the target slave device and a read/write
flag.

3. The slave device with the matching address responds with an acknowledgment
signal.

4. Communication proceeds between the master and the slave on the data bus.
Both the master and slave can receive or transmit data depending on whether the
communication is a read or write. The transmitter sends 8 bits of data to the
receiver, which replies with a 1-bit acknowledgment.

5. When the communication is complete, the master issues a stop condition
indicating that everything is done.

Figure 24 shows a sample bitstream of the I C protocol.

Beagle Protocol Analyzer User Manual

2

2

2

2

2

2

32

Figure 24 : I C Protocol.
Since there are only two wires, this protocol includes the
extra overhead of the addressing and acknowledgement
mechanisms.

1.2.3 I C Features

I C has many features other important features worth mentioning. It supports multiple
data speeds: standard (100 kbps), fast (400 kbps) and high-speed (3.4 Mbps)
communications.

Other features include:

• Built-in collision detection

• 10-bit Addressing

• Multi-master support

• Data broadcast (general call)

For more information about other features, see the references at the end of this section.

1.2.4 I C Benefits and Drawbacks

Since only two wires are required, I C is well suited for boards with many devices
connected on the bus. This helps reduce the cost and complexity of the circuit as
additional devices are added to the system.

Due to the presence of only two wires, there is additional complexity in handling the
overhead of addressing and acknowledgments. This can be inefficient in simple
configurations and a direct-link interface such as SPI might be preferred.

1.2.5 I C References

• I C bus – NXP (Philips) Semiconductors Official I C website

• I C (Inter-Integrated Circuit) Bus Technical Overview and Frequently Asked
Questions – Embedded Systems Academy

• Introduction to I C – Embedded.com

• I C – Open Directory Project Listing

Beagle Protocol Analyzer User Manual

2

2

2

2

2

2

2 2

2

2

2

33

http://www.nxp.com/products/interface_control/i2c/index.html
http://www.nxp.com/products/interface_control/i2c/index.html
http://www.nxp.com/products/interface_control/i2c/index.html
http://www.esacademy.com/faq/i2c/
http://www.esacademy.com/faq/i2c/
http://www.esacademy.com/faq/i2c/
http://www.esacademy.com/faq/i2c/
http://www.embedded.com/story/OEG20010718S0073
http://www.embedded.com/story/OEG20010718S0073
http://www.embedded.com/story/OEG20010718S0073
http://dmoz.org/Computers/Hardware/Buses/I2C/
http://dmoz.org/Computers/Hardware/Buses/I2C/
http://dmoz.org/Computers/Hardware/Buses/I2C/

1.3 SPI Background

1.3.1 SPI History

SPI is a serial communication bus developed by Motorola. It is a full-duplex protocol
which functions on a master-slave paradigm that is ideally suited to data streaming
applications.

1.3.2 SPI Theory of Operation

SPI requires four signals: clock (SCLK), master output/slave input (MOSI), master input/
slave output (MISO), and slave select (SS).

Figure 25 : Sample SPI Implementation.
Each slave device requires a separate slave select signal
(SS). This means that as devices are added, the circuit
increases in complexity.

Three signals are shared by all devices on the SPI bus: SCLK, MOSI, and MISO. SCLK
is generated by the master device and is used for synchronization. MOSI and MISO are
the data lines. The direction of transfer is indicated by their names. Data is always
transferred in both directions in SPI, but an SPI device interested in only transmitting
data can choose to ignore the receive bytes. Likewise, a device only interested in the
incoming bytes can transmit dummy bytes.

Each device has its own SS line. The master pulls low on a slave's SS line to select a
device for communication.

The exchange itself has no pre-defined protocol. This makes it ideal for data-streaming
applications. Data can be transferred at high speed, often into the range of the tens of

Beagle Protocol Analyzer User Manual

34

megahertz. The flipside is that there is no acknowledgment, no flow control, and the
master may not even be aware of the slave's presence.

1.3.3 SPI Modes

Although there is no protocol, the master and slave need to agree about the data frame
for the exchange. The data frame is described by two parameters: clock polarity (CPOL)
and clock phase (CPHA). Both parameters have two states which results in four possible
combinations. These combinations are shown in Figure 26.

Figure 26 : SPI Modes
The frame of the data exchange is described by two
parameters, the clock polarity (CPOL) and the clock phase
(CPHA). This diagram shows the four possible states for
these parameters and the corresponding mode in SPI.

1.3.4 SPI Benefits and Drawbacks

SPI is a very simple communication protocol. It does not have a specific high-level
protocol which means that there is almost no overhead. Data can be shifted at very high
rates in full duplex. This makes it very simple and efficient in a single-master single-slave
scenario.

Because each slave needs its own SS, the number of traces required is n+3, where n is
the number of SPI devices. This means increased board complexity when the number of
slaves is increased.

Beagle Protocol Analyzer User Manual

35

1.3.5 SPI References

• Introduction to Serial Peripheral Interface – Embedded.com

• SPI – Serial Peripheral Interface

1.4 MDIO Background

1.4.1 MDIO History

Management Data Input/Output, or MDIO, is a 2-wire serial bus that is used to manage
PHYs or physical layer devices in media access controllers (MACs) in Gigabit Ethernet
equipment. The management of these PHYs is based on the access and modification of
their various registers.

MDIO was originally defined in Clause 22 of IEEE RFC802.3. In the original
specification, a single MDIO interface is able to access up to 32 registers in 32 different
PHY devices. These registers provide status and control information such as: link status,
speed ability and selection, power down for low power consumption, duplex mode (full or
half), auto-negotiation, fault signaling, and loopback.

To meet the needs the expanding needs of 10-Gigabit Ethernet devices, Clause 45 of
the 802.3ae specification provided the following additions to MDIO:

• Ability to access 65,536 registers in 32 different devices on 32 different ports

• Additional OP-code and ST-code for Indirect Address register access for
10 Gigabit Ethernet

• End-to-end fault signaling

• Multiple loopback points

• Low voltage electrical specification

1.4.2 MDIO Theory of Operation

The MDIO bus has two signals: Management Data Clock (MDC) and Managment Data
Input/Ouput (MDIO).

MDIO has specific terminology to define the various devices on the bus. The device
driving the MDIO bus is identified as the Station Management Entity (STA). The target
devices that are being managed by the MDC are referred to as MDIO Manageable
Devices (MMD).

Beagle Protocol Analyzer User Manual

36

http://www.embedded.com/story/OEG20020124S0116
http://www.mct.net/faq/spi.html

The STA initiates all communication in MDIO and is responsible for driving the clock on
MDC. MDC is specified to have a frequency of up to 2.5 MHz.

1.4.3 Clause 22

Clause 22 defines the MDIO communication basic frame format (Figure 27) which is
composed of the following elements:

Figure 27 : Basic MDIO Frame Format

Table 3 : Clause 22 format

ST 2 bits Start of Frame (01 for Clause 22)

OP 2 bits OP Code

PHYADR 5 bits PHY Address

REGADR 5 bits Register Address

TA 2 bits Turnaround time to change bus ownership from STA to MMD if required

DATA 16 bits Data
Driven by STA during write
Driven by MMD during read

The frame format only allows a 5-bit number for both the PHY address and the register
address, which limits the number of MMDs that the STA can interface. Additionally,
Clause 22 MDIO only supports 5 V tolerant devices and does not have a low voltage
option.

1.4.4 Clause 45

In order to address the deficiencies of Clause 22, Clause 45 was added to the
802.3 specification. Clause 45 added support for low voltage devices down to 1.2 V and
extended the frame format (Figure 28) to provide access to many more devices and
registers. Some of the elements of the extended frame are similar to the basic data
frame:

Beagle Protocol Analyzer User Manual

37

Figure 28 : Extended MDIO Frame Format

Table 4 : Clause 45 format

ST 2 bits Start of Frame (00 for Clause 45)

OP 2 bits OP Code

PHYADR 5 bits PHY Address

DEVTYPE 5 bits Device Type

TA 2 bits Turnaround time to change bus ownership from
STA to MMD if required

ADDR/DATA 16 bits Address or Data
Driven by STA for address
Driven by STA during write
Driven by MMD during read
Driven by MMD during read-increment-address

The primary change in Clause 45 is how the registers are accessed. In Clauses 22, a
single frame specified both the address and the data to read or write. Clause 45 changes
this paradigm. First an address frame is sent to specify the MMD and register. A second
frame is then sent to perform the read or write.

The benefits of adding this two cycle access are that Clause 45 is backwards compatible
with Clause 2, allowing devices to interoperate with each other. Secondly, by creating a
address frame, the register address space is increased from 5 bits to 16 bits, which
allows an STA to access 65,536 different registers.

In order to accomplish this, several changes were made in the composition of the data
frame. A new ST code (00) is defined to identify Clause 45 data frames. The OP codes
were expanded to specify an address frame, a write frame, a read frame, or a read and
post read increment address frame. Since the register address is no longer needed, this
field is replaced with DEVTYPE to specify the targeted device type. The expanded
device type allows the STA to access other devices in addition to PHYs.

Additional details about Clause 45 can be found on the IEEE 802.3 workgroup website.

Beagle Protocol Analyzer User Manual

38

1.4.5 MDIO References

• IEEE 802 LAN/MAN Standards Committee

• Use The MDIO Bus To Interrogate Complex Devices – Electronic Design
Magazine

Beagle Protocol Analyzer User Manual

39

http://www.ieee802.org/
http://web.archive.org/web/20081004023536/http://electronicdesign.com/Articles/Index.cfm?AD=1&AD=1&ArticleID=3497

2 Hardware Specifications

2.1 Beagle USB 5000 SuperSpeed Protocol Analyzer v2

2.1.1 Front Panel

The front panel (Figure 29) of the Beagle USB 5000 Protocol Analyzer offers a number
of LED indicators and connectors.

Figure 29 : Beagle USB 5000 SuperSpeed Protocol
Analyzer v2 - Front

Analyzer Power

The Beagle USB 5000 analyzer power indicator is integrated into the Total Phase logo
located above the USB 3.0 External Input/Output connectors. When the analyzer is
powered, the large circle in the Total Phase logo will be illuminated.

Target Power

The Target Power indicator consists of two elements: the large white circular button and
the LED indicator in the upper right corner of the button. When the button is pressed, V

 will be disconnected between the target host and target device.

When V is present, the white LED will be on. When the button is pressed to
disconnect V , the white LED will turn off. V can also be disconnected by software.
Should V be disconnected in this way, the LED will turn off as expected.

Beagle Protocol Analyzer User Manual

BUS

BUS

BUS BUS

BUS

40

Target Host and Target Device Ports

The Target Host port is a SuperSpeed USB A receptacle. While this receptacle may
appear to be a USB 2.0 port, this receptacle features the 5 extra conductors required for
SuperSpeed USB. This receptacle is compatible with both USB 2.0 and USB 3.0 cables.
However, in order to monitor USB 3.0 traffic, a USB 3.0 cable must be used to connect
to a USB 3.0 host.

The Target Device port is a SuperSpeed USB B receptacle. This receptacle is
compatible with both USB 2.0 and USB 3.0 cables. However, in order to monitor
USB 3.0 traffic, a USB 3.0 cable must be used to connect to a USB 3.0 device.

The Beagle USB analyzer must be powered to ensure that the USB 3.0 ports function
properly. Failure to power the Beagle USB analyzer before attaching the target USB host
and device may result in unexpected behavior.

As long as the analyzer is powered on, the USB 3.0 connectors will be active and will
transmit USB 3.0 data, even if the analyzer is not actively capturing data. This is true
even if the analyzer is not connected to the Analysis computer.

Activity Indicators

Between the Target Host and Target Device ports, there are a number of LED indicators.

RxTerm

RxTerm, or receiver termination, indicators are illuminated when the presence of the
USB 3.0 termination resistor is detected.

During normal operation, it is possible that the receiver termination indicator for the
Target Device may remain illuminated even though the device may have been removed
from the analyzer. If the target host continues to send data, regardless of the presence
of the target device, the analyzer will assume that the device is still connected to the bus.

A sophisticated algorithm is used to balance the detection of the termination status of the
line and maintaining data capture fidelity. In situations where there is a conflict, the
analyzer will focus on maintaining the data capture at the expense of a delayed receiver
termination detection.

For more detailed information about receiver termination detection, please refer to
Section 3.3.1 in the Device Operation Section.

USB 3.0 Activity

The USB 3.0 Activity LEDs are illuminated when there is USB 3.0 bus activity and a data
capture is active. The LED blink speed is proportional to the amount of USB 3.0 traffic on

Beagle Protocol Analyzer User Manual

41

the bus. If the analyzer is not capturing data, the LEDs will not be active even if there is
USB 3.0 traffic on the bus.

Please note that there is a minimum activity threshold to activate the LEDs. In general,
the LEDs will only be active in the U0 state. Periodic link commands or LFPS traffic may
not necessarily be sufficient to cross the activity threshold.

USB 2.0 Activity

The USB 2.0 Activity LED is illuminated when there is USB 2.0 bus activity and the data
capture is active. The LED blink speed is proportional to the amount of USB 2.0 traffic on
the bus. If the analyzer is not capturing data, the LEDs will not be active even if there is
USB 2.0 traffic on the bus.

Please note that, unlike the Beagle USB 480 analyzer, the LED will not be illuminated if
there is no USB 2.0 activity.

Capture

The Capture LED indicator will be illuminated when a capture is active. Once the capture
has ended, the Capture indicator will continue to blink while data is being transferred to
the Analysis computer. The Capture LED will turn off once the data transfer is complete.

Trigger

The Trigger LED indicator will be illuminated once the trigger occurs. The indicator will
remain active until all the data has been downloaded to the Analysis PC.

External Inputs and Outputs

The Beagle USB 5000 analyzer features two separate sets of external inputs and
outputs.

USB 3.0 Input and Output

The USB 3.0 input and output are the two SMA connectors located on the front panels.
Both the input and the output have an impedance of 50 ohms and are rated for 1.8 V,
12 mA.

WARNING: The USB 3.0 Digital Input and Output are only rated for 1.8 V. The
USB 3.0 input and output of the Beagle USB 5000 analyzer have been optimized for
maximum edge performance at 125 MHz. Applying signals with higher voltage will
damage your analyzer and is not covered by the warranty.

The external USB 3.0 input has a latency of 0 to 25 ns from when the input is asserted to
when the analyzer detects the assertion. This input can be used as an external capture
trigger or as a way to synchronize USB 3.0 traffic with external logic. It is possible to
capture a 125 MHz signal pulse with the external input, however if these events are too

Beagle Protocol Analyzer User Manual

42

frequent, the analyzer will throttle the external input signal in order to maintain capture
fidelity.

The USB 3.0 external output allows users to output USB 3.0 events to external devices
such as a oscilloscope or logic analyzer. The output has a short latency of 50 to 75 ns
from when an event occurs to when the output is asserted on the external output SMA
connector. Please see Section 3.3.5 for more information about External Output
behavior.

USB 2.0 Inputs and Outputs

The USB 2.0 External Inputs and Outputs are available through the Mini-DIN9 port. The
output level is 3 V and the input is 3.3 V tolerant. The pin out and functionality of this
connector is the same as the Beagle USB 480 analyzer which is described in Section
2.2.1.

WARNING: The USB 2.0 Inputs and Outputs are only rated for 3.3 V. Applying
signals with higher voltage will damage your analyzer and is not covered by the
warranty.

2.1.2 Back Panel

The back panel (Figure 30) of the Beagle USB 5000 Protocol Analyzer provides the
power connector and downlink connector to the Analysis PC.

Figure 30 : Beagle USB 5000 SuperSpeed Protocol
Analyzer v2 - Back

Analysis

The Analysis port is a SuperSpeed USB downlink. The Beagle analyzer must be
connected with a standard USB 3.0 or USB 2.0 cable to the Analysis computer.

Beagle Protocol Analyzer User Manual

43

Power

The Beagle USB 5000 analyzer includes a 36 W AC power adapter. To ensure the
proper operation of the Beagle analyzer it must be powered on before any devices are
connected to the analyzer.

The DC connector has positive polarity and has a barrel plug with dimensions of 5.5 mm
x 3.5 mm x 9.5 mm.

HDMI Ports

The Beagle USB 5000 analyzer has two HDMI ports, labeled SYNC OUT and SYNC IN,
on the back panel. These HDMI ports are provided to allow capture synchronization
between two or more Beagle USB 5000 analyzers. Do not connect the HDMI ports to
any arbitrary HDMI-compatible device. The HDMI ports on a Beagle USB 5000 analyzer
back panel should only be connected to the HDMI ports on another Beagle USB 5000
analyzer.

For details on using the Cross-Analyzer Sync feature, refer to Section 3.3.7.

Note : Cross-Analyzer Sync HDMI ports are only available on hardware v2.00 or later.

2.1.3 On-board Buffer

The Beagle USB 5000 analyzer includes a 2 B USB 3.0 memory buffer. This memory
buffer can be upgraded to 4 GB with an optional upgrade package. The Beagle USB
5000 analyzer has a parallel 128 MB USB 2.0 buffer which is used for USB 2.0 only
captures and simultaneous USB 2.0/3.0 captures.

The memory provides a temporary FIFO storage buffer for capture data. This data is
constantly streamed from the analyzer to the Analysis computer over the high-speed
data downlink after the trigger condition has been met. Consequently, the memory buffer
is constantly being emptied, which frees up resources for additional data. This means
that the Beagle analyzer is capable of capturing significantly more data than the
available on-board hardware buffer.

2.1.4 Active Analog Buffer

The Beagle USB 5000 analyzer features an active analog buffer circuit as part of the
capture front end of the SuperSpeed signals to provide optimal signal integrity. Each
signal transmitted, by the host and device, is buffered and retransmitted. The signal is
not retimed to the respective receiver.

At the same time as data is retransmitted to the target receiver, a parallel signal is
passed to the analyzer for analysis. The maximum latency for the analog buffering is
less than 1 ns and thus the circuitry is non-intrusive from the perspective of the host and

Beagle Protocol Analyzer User Manual

44

device. Due to the high-speed signaling of USB 3.0 data, it is not practical to passively
tap the data lines between host and device outside of very high-end oscilloscopes and
bit error rate testers.

Configurable SuperSpeed Front-End

For the convenience of the user, it is possible to modify the receiver and transmitter
settings of the active buffer circuitry.

On the receiver side, users are able to modify the receiver equalization settings, though
often this is not necessary.

On the transmitter side, users are able to adjust the signal level of the output. By
configuring the levels sent by the transmitter, it is possible to test the sensitivity of the
receiver of the USB 3.0 device. The characteristics of the transmitter can also be
modified by changing the output pre-emphasis.

2.1.5 Signal Specifications and Power Consumption

Speed

The Beagle USB 5000 Protocol Analyzer supports capture of all wired USB speeds. The
analyzer has automatic speed detection as well as manual speed locking.

ESD Protection

The Beagle analyzer has built-in electrostatic discharge protection to prevent damage to
the unit from high voltage static electricity.

Power consumption

When the Beagle analyzer is connected, it consumes a maximum of approximately
2.5 mA from the capture host.

2.2 Beagle USB 480 Protocol Analyzer

The Beagle USB 480 series of protocol analyzers consist of the following:

• Beagle USB 480 Protocol Analyzer

• Beagle USB 480 Power Protocol Analyzer, Standard Edition

• Beagle USB 480 Power Protocol Analyzer, Ultimate Edition

Beagle Protocol Analyzer User Manual

45

Beagle USB 480 Power Protocol Analyzers feature larger on=board memory buffers and
V Current/Voltage Monitoring. The Ultimate Edition includes Advanced USB 2.0
Match/Action Triggers and Filters. All Beagle USB 480 Protocol Analyzers have identical
hardware interface.

2.2.1 Connector Specification

On one side of the Beagle USB 480 monitor is a single USB-B receptacle. This is the
Analysis side (Figure 31). This port connects to the analysis computer that is running
the Beagle Data Center software or custom application. Furthermore, the Beagle USB
480 analyzer Analysis side must be plugged in at any time a target device is
plugged in. This is to ensure that all connections are properly powered.

Figure 31 : Beagle USB 480 Protocol Analyzer - Analysis
Side

The opposite side is the Capture side (Figure 32), and it contains a USB-A and USB-B
receptacle. These are used to connect the target host computer to the target device. The
target host computer can be the same computer as the analysis computer, although it
may not be optimal under certain conditions.

Figure 32 : Beagle USB 480 Protocol Analyzer - Capture
Side

Beagle Protocol Analyzer User Manual

BUS

46

The Capture side acts as a USB pass-through. In order to remain within the USB 2.0
specifications, no more than 5 meters of USB cable should be used in total between the
target host computer and the target device.

The Capture side also includes a mini-DIN 9 connector which serves as a connection to
the digital inputs and outputs. Its pin outs are described in Figure 33 and the cable
coloring for the included cable are described in Table 5.

Figure 33 : Beagle USB 480 Protocol Analyzer - Digital I/O
Port Pinout

Table 5 : Digital I/O Cable Pin Assignments

Pin Name Color Pin Number

Input 1 Brown Pin 1

Input 2 Red Pin 2

Input 3 Orange Pin 3

Input 4 Yellow Pin 4

Output 1 Green Pin 5

Output 2 Blue Pin 6

Output 3 Purple Pin 7

Output 4 Grey Pin 8

Ground Black Pin 9

The top of the Beagle USB 480 Protocol Analyzer has three LED indicators as shown in
Figure 34.

• The green LED serves as an Analysis Port connection indicator. The green LED
will be illuminated when the Beagle analyzer has been correctly connected to the
analysis computer and is receiving power from USB.

Beagle Protocol Analyzer User Manual

47

• The amber LED serves as a Target Host connection indicator. The amber LED
will be illuminated when the target host computer is connected to the analyzer.

• Finally, the red LED is an activity LED. Its blink rate is proportional to the amount
of data being sent across the monitored bus. If no data is seen on the bus, but the
capture is active, the activity LED will simply remain on.

Figure 34 : Beagle USB 480 Protocol Analyzer - LED
Indicators

Please check all the connections if the green or the amber LED fail to illuminate after the
Beagle USB 480 analyzer has been connected to the analysis computer and the target
host computer.

2.2.2 Digital I/O

Digital inputs allow users to synchronize external logic with the analyzed USB data
stream. Whenever the state of an enabled digital input changes, an event will be sent to
the analysis PC. The digital input may not oscillate at a rate faster than 30 MHz. Any
faster and the events may not be passed to the PC. Also, when an active data packet is
on the bus, only one input event will be recorded and sent back to the analysis PC. Once
the packet has completed, the latest state of the lines (if changed) will be sent back to
the PC. Digital inputs are rated for 3.3 V.

Digital outputs allow users to output events to external devices, such as an oscilloscope
or logic analyzer, especially to trigger the oscilloscope to capture data. Digital outputs
can be set to activate on various conditions that are described more thoroughly in
Section 3.4.4. The digital outputs are rated to 3.3 V and 10 mA.

2.2.3 On-board Buffer

The Beagle USB 480 analyzer contains a 64 MB on-board buffer. This buffer serves two
purposes. It helps buffer large data flows during real-time capture when the analysis
computer can not stream the data off the Beagle analyzer fast enough. It is also used
during a delayed-download capture to store all of the captured data.

Beagle Protocol Analyzer User Manual

48

2.2.4 Hardware Filters

The Beagle USB 480 analyzer provides six different hardware filters. These will filter out
data-less transactions in the hardware, such as IN + NAK and PING + NAK
combinations. The unwanted data is thrown away, reducing the amount of captured data
on the device, the amount of analysis traffic back to the analysis PC, and the processing
overhead on the analysis PC. A more detailed overview of the hardware filters is
available in Section 3.4.5.

2.2.5 Current/Voltage Monitoring

For the Beagle USB 480 Power Protocol Analyzer, Standard and Ultimate Editions, the
USB-A and USB-B capture inputs are rated 1A continuous current and 0 to 24V. The
analyzer samples V current/voltage measurements every 12 x 2 clock cycles, which
is approximately every 13.1 ms. The maximum current/voltage measurement error is
±50 mV and ±5 mA at 5 V and for current up to 500 mA. A more detailed overview of
Current/Voltage Monitoring is available in Section 3.4.8.

Disclaimer: When using the Beagle 480 USB Power Protocol Analyzer above the
rated current and voltage, extreme caution is advised. Customers who choose to
do so are at their own risk and may cause permanent damage to the analyzer.
Total Phase is not liable for damages caused by applying current and voltage in
excess of the warranted operating range.

2.2.6 V Trigger

The Beagle USB 480 Power Protocol Aanlzyer, Ultimate Edition, has the additional
capability to trigger on a rise or drop in V current or voltage. The USB-A and USB-B
capture inputs of the analyzer are rated 1A continuous current and 0 to 24V. Although
the analyzer can be configured to trigger on a current level from -3A to 3A, the
continuous current should not exceed 1A. The voltage trigger level can be configured
from 0 to 24V.

Important: See the above disclaimer (Section 2.2.5) for operating the analyzer
above the rated current and voltage.

2.2.7 Signal Specifications / Power Consumption

Speed

The Beagle USB 480 Protocol Analyzer supports capture of all wired USB speeds. The
analyzer has automatic speed detection as well as manual speed locking.

Beagle Protocol Analyzer User Manual

BUS
16

BUS

BUS

49

ESD Protection

The Beagle analyzer has built-in electrostatic discharge protection to prevent damage to
the unit from high voltage static electricity.

Power consumption

When the Beagle analyzer is connected, it consumes a maximum of approximately
2.5 mA from the capture host. This is a minimal overhead in addition to the current draw
of the target device. Note that if a capture target reports itself as a 100 mA device and
draws almost all of that current, the Beagle analyzer's extra power consumption may
cause the overall power consumption to be out of spec.

The Beagle analyzer consumes a maximum of approximately 180 mA.

2.3 Beagle USB 12 Protocol Analyzer

2.3.1 Connector Specification

On one side of the Beagle USB 12 monitor is a single USB-B receptacle. This is the
Analysis side (Figure 35). This port connects to the analysis computer that is running
the Beagle Data Center software.

Figure 35 : Beagle USB 12 Protocol Analyzer - Analysis
Side

On the opposite side is the Capture side (Figure 36), are a USB-A and USB-B
receptacle. These are used to connect the target host computer to the target device. The
target host computer can be the same computer as the analysis computer.

Beagle Protocol Analyzer User Manual

50

Figure 36 : Beagle USB 12 Protocol Analyzer - Capture
Side

The Capture side acts as a USB pass-through. In order to remain within the USB 2.0
specifications, no more than 5 meters of USB cable should be used in total between the
target host computer and the target device. The Beagle USB 12 monitor is galvanically
isolated from the USB bus to ensure the signal integrity.

Please note, that on the Capture side, there is a small gap between the two receptacles.
In this gap, two LED indicators are visible, a green one and an amber one, as shown in
Figure 37. When the Beagle USB 12 monitor has been correctly connected to the
analysis computer, the green LED will illuminate. When the Beagle USB 12 monitor is
correctly connected to the target host computer, the amber LED will illuminate.

Figure 37 : Beagle USB 12 Protocol Analyzer - LED
Indicators

Please check all the connections if the one or both LEDs fail to illuminate after the
Beagle USB 12 monitor has been connected to the analysis computer or the target host
computer.

Beagle Protocol Analyzer User Manual

51

2.3.2 Signal Specifications / Power Consumption

Speed

The Beagle USB 12 Protocol Analyzer supports full- and low-speed capture. It does not
support high-speed protocols for capture. The downlink to the analysis PC must be high-
speed.

ESD protection

The Beagle analyzer has built-in electrostatic discharge protection to prevent damage to
the unit from high voltage static electricity.

Power consumption

The Beagle analyzer consumes a maximum of approximately 15 mA from the capture
host. This is a minimal overhead in addition to the current draw of the target device. Note
that if a capture target reports itself as a 100 mA device and draws almost all of that
current, the Beagle analyzer's extra power consumption will cause the overall power
consumption to be out of spec.

Furthermore, the Beagle analyzer consumes a maximum of approximately 125 mA of
power from the analysis PC. However, it reports itself to the analysis PC as a low-power
device. This reporting allows the Beagle analyzer to be used when its analysis port is
connected to a bus-powered hub (which are only technically specified to supply 100 mA
per port). Normally this extra amount of power consumption should not cause any
serious problems since other ports on the hub are most likely not using their full 100 mA
budget. If there are any concerns regarding the total amount of available current supply,
it is advisable to plug the Beagle analyzer's directly into the analysis PC's USB host port
or to use a self-powered hub.

2.4 Beagle I C/SPI/MDIO Protocol Analyzer

2.4.1 Connector Specification

The ribbon cable connector is a standard 0.100" (2.54 mm) pitch IDC type connector.
This connector will mate with a standard keyed boxed header.

Alternatively, split cables are available which connects to the ribbon cable and provides
individual leads for each pin with or without grabber clips.

Beagle Protocol Analyzer User Manual

2

52

Orientation

The ribbon cable pin order follows the standard convention. The red line indicates the
first position. When looking at your Beagle analyzer in the upright position (Figure 38),
pin 1 is in the top left corner, and pin 10 is in the bottom right corner.

Figure 38 : The Beagle I C/SPI/MDIO Protocol Analyzer in
the upright position.
Pin 1 is located in the upper left corner of the connector,
and Pin 10 is located in the lower right corner of the
connector.

If you flip your Beagle analyzer over (Figure 39) such that the text on the serial number
label is in the proper upright position, the pin order is as shown in the following diagram.

Beagle Protocol Analyzer User Manual

2

53

Figure 39 : The Beagle I C/SPI/MDIO Protocol Analyzer in
the upside down position.
Pin 1 is located in the lower left corner of the connector and
Pin 10 is located in the upper right corner of the connector.

Order of Leads

1. SCL

2. GND

3. SDA

4. NC/+5V

5. MISO

6. NC/+5V

7. SCLK/MDC

8. MOSI/MDIO

9. SS

10. GND

Ground

GND (Pin 2):
GND (Pin 10):

It is imperative that the Beagle analyzer's ground lead is connected to the ground of the
target system. Without a common ground between the two, the signaling will be
unpredictable and communication will likely be corrupted. Two ground pins are provided
to ensure a secure ground path.

I C Pins

SCL (Pin 1):

Serial Clock line – the signal used to synchronize communication between the master
and the slave.

SDA (Pin 3):

Beagle Protocol Analyzer User Manual

2

2

54

Serial Data line – the bidirectional signal used to transfer data between the transmitter
and the receiver.

SPI Pins

SCLK (Pin 7):

Serial Clock – control line that is driven by the master and regulates the flow of the data
bits.

MOSI (Pin 8):

Master Out Slave In – this data line supplies output data from the master which is shifted
into the slave.

MISO (Pin 5):

Master In Slave Out – this data line supplies the output data from the slave to the input
of the master.

SS (Pin 9):

Slave Select – control line that allows slaves to be turned on and off via hardware
control.

MDIO Pins

MDC (Pin 7):

Management Data Clock – control line that is driven by the STA and synchronizes the
flow of the data on the MDIO line.

MDIO (Pin 8):

Management Data Input/Output – the bidirectional signal used to transfer data between
the STA and the MMD.

Powering Downstream Devices

It is possible to power a downstream target, such as an I C or SPI EEPROM with the
Beagle analyzer's power (which is provided by the analysis PC's USB port). It is ideal if
the downstream device does not consume more than 20-30 mA. The Beagle analyzer is
compatible with USB hubs as well as USB host controllers. Bus-powered USB hubs are
technically only rated to provide 100 mA per USB device. If the Beagle analyzer is
directly plugged into a USB host controller or a self-powered USB hub, it can
theoretically draw up to 500 mA total, leaving approximately 375 mA for any downstream

Beagle Protocol Analyzer User Manual

2

55

target. However, the Beagle analyzer always reports itself to the host as a low-power
device. Therefore, drawing large amounts of current from the host is not advisable.

2.4.2 Signal Specifications / Power Consumption

Speed

The Beagle I C/SPI/MDIO is capable of monitoring I C bus bit rates of up to 4 MHz, SPI
bit rates of up to 24 MHz, and MDIO bit rates of up to 2.5 MHz. Both I C and MDIO
monitoring can sustain their respective maximum speeds, however SPI monitoring at the
maximum bit rate may not be possible for sustained traffic. The exact limitations of SPI
monitoring are dependent on the target bus conditions and the CPU of the host PC. For
example, the worst-case situation is a sustained sequence of short SPI packets at the
maximum bus bit rate of 24 MHz.

It is important to note that in order to properly capture I C, SPI, or MDIO signals, the
sampling rate must be set properly. For SPI or MDIO monitoring, the minimum
requirement for the sampling rate is twice the bus bit rate. For I C monitoring, the
sampling rate should be 5-10 times the bus bit rate. For further details on this refer to
Section 3.4.6.3.

Logic High Levels

All signal levels should be nominally 3.3 V (+/- 10%) logic high. This allows the Beagle
analyzer to be used with both TTL (5 V) and CMOS logic level (3.3 V) devices. A logic
high of 3.3 V will be adequate for TTL-compliant devices since such devices are
ordinarily specified to accept logic high inputs above approximately 3 V.

ESD protection

The Beagle analyzer has built-in electrostatic discharge protection to prevent damage to
the unit from high voltage static electricity. This adds a small amount of parasitic
capacitance (approximately 15 pF) to the signal path under analysis.

Power Consumption

The Beagle analyzer consumes approximately 125 mA of power from the analysis PC.
However, it reports itself to the analysis PC as a low-power device. This reporting allows
the Beagle analyzer to be used when its analysis port is connected to a bus-powered
hub (which are only technically specified to supply 100 mA per port). Normally this extra
amount of power consumption should not cause any serious problems since other ports
on the hub are most likely not using their full 100 mA budget. If there are any concerns
regarding the total amount of available current supply, it is advisable to plug the Beagle
analyzers directly into the analysis PC's USB host port or to use a self-powered hub.

Beagle Protocol Analyzer User Manual

2 2

2

2

2

56

2.5 USB 2.0

All Beagle analyzers are high-speed USB 2.0 devices. They require a high-speed
USB 2.0 host controller for the analysis data connection.

2.6 Temperature Specifications

The Beagle analyzers are designed to be operated at room temperature (10-35°C). The
electronic components are rated for standard commercial specifications (0-70°C).
However, the plastic housing, along with the ribbon and USB cables, may not withstand
the higher end of this range. Any use of the Beagle analyzer outside the room
temperature specification will void the hardware warranty.

Beagle Protocol Analyzer User Manual

57

3 Device Operation

3.1 Electrical Connections

3.1.1 Beagle USB Protocol Analyzers

The Beagle USB analyzer's analysis port must be connected to the analysis computer
through a USB cable. The Capture side of the Beagle analyzer must be placed on the
USB to be monitored. Normally, this is accomplished by placing the Beagle analyzer in-
line between the USB device and host being monitored. In other words, the bus to be
monitored goes through the Beagle USB analyzer. To properly accomplish this
connection, connect the target host to the USB-B receptacle on the Capture side of the
Beagle USB analyzer, and connect the target device to the USB-A receptacle on the
Capture side of the Beagle USB analyzer. See Section 2.2.1 for more details. This is the
setup illustrated in panels a-c of Figure 40.

In some cases, the target bus is fully internal to an embedded system. If so, it is simply
necessary to tap off the lines through the use of a parallel connector. One can plug in the
tapped off cable into either the Target host or Target device port of the analyzer; both
are equivalent. This is illustrated in Figure 40 d.

Figure 40 : Beagle USB Protocol Analyzer Connections
Beagle USB analyzer may be connected to the same bus
as it is monitoring (panel a), or to a different bus (panel b).
Multiple host controllers may reside in separate host
controllers (panel c). Panel d shows the case of sniffing a
self-contained embedded bus.

The connections of the Beagle USB analyzer are complicated somewhat by the fact that
the Beagle analyzer is monitoring USB signals and then communicating the monitored
data back though another USB port. Thus, the issue of the host broadcasting, as

Beagle Protocol Analyzer User Manual

58

described in Section 1.1.2, comes into play. Because all Beagle analyzers use high-
speed USB communication, this issue is only pertinent when using one of the high-
speed capable protocol analyzers (such as the Beagle USB 480 Protocol Analyzer or the
Beagle USB 5000 SuperSpeed Protocol Analyzers) to monitor a high-speed device. If
the Beagle analyzer's analysis port is connected to the same host controller as a high-
speed device that it is monitoring (Figure 40 a) then the Beagle analyzer will end up
sniffing some of its own traffic. This is especially true if the Beagle analyzer is configured
to stream back bus traffic to the PC in real time! This will be seen in the capture as many
IN packets to the Beagle analyzer's device address with occasional downstream
handshake packets.

This phenomenon has two negative consequences. The extra traffic on the capture bus
from the Beagle analyzer may make it difficult to locate the USB traffic of interest within
the volume of data captured. Additionally, the bus traffic for Beagle analyzer will reduce
the bandwidth available to other USB devices on the bus.

There are a number of ways to deal with this issue.

• One method for dealing with this problem is install another USB host controller to
the computer and connect one host controller to the analysis port of the Beagle
analyzer and use the other host controller to communicate with the host and
device under test (Figure 40 b). Downstream USB packets are only broadcast on
USB links on the same host controller, so this technique is another way to ensure
that the Beagle analyzer's traffic is not seen on the capture side of the analyzer.
The disadvantage is that the PC must spend processing time for communicating
both with the target device as well as the Beagle analyzer.

• The preferred method is to connect separate computers to the analysis port and
to the target host port of the Beagle analyzer (Figure 40 c). This puts the analysis
end of the Beagle analyzer on a different bus, ensuring that its traffic is not seen
on the capture side of the analyzer. Furthermore, the analysis PC can have full
resources to process the incoming data, and the test PC will not be encumbered
by the analysis software.

Note: All of the USB ports on most computers are on a single host controller, so
connecting to a different USB port is not sufficient. Installing a PCI, PCI Express, or PC
Card USB controller card will ensure there is a second USB host controller on the
computer.

If the user is constrained to the scenario illustrated in Figure 40a, there are two features
of the Beagle USB 480 and Beagle USB 5000 analyzer that help mitigate the dilemmas
previously outlined.

• One feature is a hardware filtering option that runs on the Beagle analyzer to filter
packets directed to the Beagle analyzer's device address. These packets will be
filtered out from the capture by the hardware, so it will not be sent back through
the analysis port. This option does not entirely remove the Beagle analyzer's

Beagle Protocol Analyzer User Manual

59

traffic from the monitored bus, but it will definitely minimize the analyzer's effect
on the bus since the IN and ACK tokens sent to the analyzer will not again appear
in the analysis traffic. In situations where the maximum bandwidth is required by
the target device, avoid using this option.

• The second feature is the ability to perform a delayed-download capture. In this
capture mode, the capture data is not streamed out of the analysis port of the
Beagle analyzer until after the analyzer has stopped monitoring the bus. This
greatly reduces the amount of USB traffic going to the Beagle analyzer while the
capture is active. These features are mentioned later in this section where
appropriate.

3.1.2 Beagle I C/SPI/MDIO Protocol Analyzer

The Beagle I C/SPI/MDIO analyzer uses a standard USB cable to connect the protocol
analyzer to the analysis computer. The data line(s), clock, and ground of the
communication protocol in question must be properly connected to the Beagle analyzer's
data line(s), clock, and ground, respectively.

3.2 Software Operational Overview

There are a series of steps required for a successful capture. These steps are handled
by the Beagle Data Center software automatically, but must be explicitly followed by an
application programmer wishing to write custom software. The application programmer
interface (API) is documented extensively in Section 6, but the following is meant to
provide a high-level overview of the operation of the Beagle analyzers.

1. Determine the port number of the Beagle analyzer. The function
bg_find_devices() returns a list of port numbers for all Beagle analyzers that
are attached to the analysis computer.

2. Obtain a Beagle handle by calling bg_open() on the appropriate port number.
All other software operations are based on this Beagle handle.

3. Configure the Beagle analyzer as necessary. The API documentation provides
complete details about the different configurations.

4. Start the capture by calling the bg_enable() function.

5. Retrieve monitored data by using the read functions that are appropriate for the
monitored bus type. There are different functions available for retrieving additional
data such as byte- and bit-level timing.

6. End the capture by calling the bg_disable() function. At this point the capture
is stopped, and no new data can be obtained.

7. Close the Beagle handle with the bg_close() function.

Beagle Protocol Analyzer User Manual

2

2

60

If the Beagle analyzer is disabled and then re-enabled it does not need to be re-
configured. However, upon closing the handle, all configuration settings will be lost.

Example code is available for download from the Total Phase website. These examples
demonstrate how to perform the steps outline above for each of the serial bus protocols
supported.

3.3 Beagle USB 5000 Protocol Analyzer Specifics

3.3.1 Heat Dissipation

Power is provided to the Beagle USB 5000 Protocol Analyzer by an external AC adapter.
During its operation, it is normal for the Beagle analyzer to become warm to the touch.
To help dissipate heat, the analyzer includes an internal fan which automatically turns on
as needed.

3.3.2 Receiver Termination Detection

Termination resistors on the SuperSpeed receivers are required for good signal integrity.
The SuperSpeed transmitter uses the presence of the termination resistors to detect the
presence of a SuperSpeed receiver. According to the USB 3.0 specification, if the
termination resistor is not detected, the SuperSpeed transmitter should not send any
SuperSpeed packets.

The Beagle USB 5000 analyzer uses a sophisticated algorithm to detect the presence of
the termination resistor. When the termination resistor is detected, the Beagle analyzer
will illuminate the RxTerm activity LED on the front panel and apply a termination resistor
on the lines presented to the transmitter.

Receiver detection can take up to 500 us, however this should have no affect on the
USB 3.0 data. According to the USB 3.0 specification, the transmitter should not send
any USB 3.0 data until the termination resistor is detected. The net effect of the delay
introduced by the detection system would be as if the cable insertion was delayed by
500 us and should have no affect on the USB 3.0 data.

The Beagle USB 5000 analyzer's receiver termination detection system is set to auto-
detect by default. It is also possible to manually set the receiver termination to be always
on or always off in the upstream or downstream direction. If the termination resistor is set
manually, the auto-detection system will be turned off. Once the handle to the Beagle
analyzer is closed, the state of the receiver termination detection system will revert to the
default setting of auto-detect.

If the termination resistors are forced on, the Beagle analyzer will apply termination
resistors to the lines it presents to the transmitter, regardless of the true state of the
target receiver termination. The RxTerm LED will be on, to indicate that the lines to the
transmitter have been terminated.

Beagle Protocol Analyzer User Manual

61

If the termination resistors are forced off, the Beagle analyzer will not apply a termination
resistor, regardless of whether the receiver has terminated the lines. The RxTerm LED
will be off, to indicate that the lines to the transmitter have not been terminated.

While the analyzer is in auto-detection mode and is in the process of testing for the
presence or absence of a receiver, it is not able to pass USB 3.0 data to the target
receiver. Conversely, while data is being sent to the target receiver, it is not possible for
the analyzer to detect the presence or absence of the termination resistor.

Note:If a device is removed while data is being sent, the Beagle analyzer will prioritize
capturing the data and will not be able to detect the absence of the termination
immediately. In this situation, the Beagle analyzer will be presenting receiver termination
on its link, which does not accurately reflect the state of the link with the receiver. The
transmitter should quickly detect that there is a problem with the link and stop
transmitting data. At this time, the Beagle analyzer will be able to detect the absence of
the termination resistor and remove its termination accordingly. When the termination is
removed, the RxTerm LED will be turned off.

The receiver termination detection system is always operating as long as the Beagle
analyzer is powered and in auto-detect mode, regardless of whether a capture is active.
As long as the analyzer is set to auto-detect, the analyzer will properly reflect the
termination of the receivers on the bus. This allows SuperSpeed hosts and devices to
properly transition through the LTSSM, even outside the scope of an active capture.

3.3.3 Polarity Detection

The polarity of a SuperSpeed differential pair is mutable to provide flexibility in the circuit
layout design. As a consequence of this the receiver must correctly detect the polarity of
the transmitters during the link training in order to properly interpret the subsequently
transmitted data.

The Beagle USB 5000 Protocol Analyzer has a robust, auto-detection system to
correctly identify the polarity of the target system. By default, this auto-detection system
is enabled. As an added feature, the polarity of each SuperSpeed differential pair can be
manually configured as well.

When the polarity is manually controlled, the analyzer will force the desired setting in the
hardware. At this point, the data received will be of the forced polarity and cannot be
changed in the software. Once the handle to the Beagle analyzer is closed, the state of
the polarity detection system will revert to the default setting of auto-detect.

Even when the polarity is manually controlled, the analyzer will still track what it believes
to be the correct polarity. Reverting the polarity setting to auto-detect will cause the
polarity on the analyzer to be set to this auto-detected configuration.

Furthermore, the polarity detection system is running even when a capture is not active.
This ensures that the analyzer is always up-to-date with the current requirements of the
devices, even when these settings change outside of the scope of an active capture.

Beagle Protocol Analyzer User Manual

62

It is important to note that the Beagle analyzer is detecting the polarity on the tapped
signal and does not in any way influence or modify the signal sent between the
transmitter and receiver. By manually changing the polarity of the lines, the analyzer is
simply changing its perception of the tapped signal and is not modifying the data sent
between the transmitter and receiver.

3.3.4 Data Scrambling Detection

Data scrambling is used to minimize interference on the data lines. When data
scrambling is enabled, nearly all symbols from the transmitter are scrambled before they
are 8b/10b encoded. The receiver must then decode the 8b/10b and descramble the
data appropriately to properly interpret the data.

Data scrambling is implemented by applying an XOR to the transmitted data with a
pseudo-random number. Receivers must then apply an XOR with the same number to
the received data in order to descramble the data. This pseudo-random number is
generated through the use of an linear feedback shift register (LFSR) that is updated
upon the transmission/reception of every symbol on the bus (with the exception of COM
and SKP symbols).

It is very important that the transmitter and receiver's LFSR stay synchronized, otherwise
data will be incorrectly descrambled. To facilitate the synchronization of the LFSRs,
COM symbols will reset the LFSR on the transmitter and receiver. Each training
sequence packet (TSEQ, TS1, TS2) starts with at least one COM symbol, and will
therefore reset and synchronize the transmitter and receiver scrambling state.

According to the USB 3.0 specification, the transmitter informs the receiver of its
scrambling mode through a single bit in the TS1 and TS2 packets. In order for a receiver
to interpret the transmitted data correctly, it must properly decode this bit and enable/
disable its descrambler as appropriate.

The Beagle USB 5000 Protocol Analyzer is able to reliably detect the state of data
scrambling and the reset events. Using its own LFSR, the Beagle analyzer can robustly
decode and descramble the tapped data.

By default data scrambling detection will be set to auto-detect. It is also possible to
manually turn data scrambling on or off for each of the analyzed streams.

The manual control of the scrambler can be especially useful in situations of bad signal
integrity. When poor signals are on the bus, it is possible for the scrambling control bit of
the TS1 or TS2 to be corrupted, and thus unintentionally mis-inform the receiver of the
true scrambling mode. In the worst case, this corruption occurs on the final TS2
transmitted, and puts the analyzer in a bad state for all subsequent data. By forcing the
scrambling mode, users can test and correct for this rare, but possible, error.

When the data scrambling is manually controlled, the analyzer will force the desired
setting in the hardware. At this point, the data received will be descrambled according to
the forced setting and cannot be changed in the software. Once the handle to the Beagle

Beagle Protocol Analyzer User Manual

63

analyzer is closed, the state of the scrambling system will revert to the default setting of
auto-detect.

Even when the scrambling is manually controlled, the analyzer will still track what it
believes to be the proper scrambling mode, as well as the proper state of the LFSR.
Reverting the scrambling setting to auto-detect will cause the scrambling on the analyzer
to be set to this auto-detected configuration.

Furthermore, the data scrambling system is running even when a capture is not active.
This ensures that the analyzer is always up-to-date with the current requirements of the
devices, even when these settings change outside of the scope of an active capture.

Please note that according to the USB 3.0 specifications, training sequences are never
scrambled. Consequently, even if the data scrambling is manually turned on, training
sequences will not be scrambled. Similarly, K-symbols are never scrambled, even if the
user manually turns the scrambling on.

It is important to note that the Beagle analyzer is detecting the data scrambling on the
tapped signal and does not in any way influence or modify the signal sent between the
transmitter and receiver. By manually changing the data scrambling of the data, the
analyzer is simply changing the perception of the tapped signal and not modifying the
data sent between the transmitter and receiver.

3.3.5 Digital Inputs

For the Beagle USB 5000 analyzer, the digital inputs provide a means for users to trigger
the capture or insert events into the data stream.

WARNING: The USB 3.0 Input is only rated for 1.8 V. The USB 3.0 input of the
Beagle USB 5000 analyzer have been optimized for maximum edge performance at
125 MHz. Consequently, it cannot tolerate voltage signals higher than 1.8 V. Applying
signals with higher voltage will damage your analyzer and is not covered by the
warranty.

For USB 3.0, there is a single external input that can be enabled by configuring matching
in the device settings. The USB 3.0 input can be used to trigger the capture and insert
events into the data stream. After the capture has been triggered, subsequent external
input events can be inserted into the capture.

The USB 3.0 input can capture external signals up to 125 MHz (8 ns pulse width).
However, in the interest of preserving capture fidelity, the analyzer may throttle the
external input signal if the rate of the input events are judged to be too high.

WARNING: The USB 2.0 Input is only rated for 3.3 V. Applying signals with higher
voltage will damage your analyzer and is not covered by the warranty.

The USB 2.0 external inputs are available on pins 1 through 4 on the Mini-DIN 9
connector. These digital input lines are 3.3 V tolerant. Each input can be configured
individually to be monitored in the capture. Each input can also be independently

Beagle Protocol Analyzer User Manual

64

configured to trigger the capture on either the rising edge, falling edge, or both. A
USB 2.0 digital input does not need to be monitored to function as a trigger.

Besides the ability to trigger the capture and the voltage level, the USB 2.0 inputs have
the same basic behavior as the digital inputs of the Beagle USB 480 analyzer described
in Section 3.4.3.

3.3.6 Digital Output

The digital outputs provide a mechanism to synchronize the Beagle USB 5000 analyzer
with other devices, such as an oscilloscope or logic analyzer, on events of interest.

WARNING: The USB 3.0 Output is only rated for 1.8 V. The USB 3.0 output of the
Beagle USB 5000 analyzer have been optimized for maximum edge performance at
125 MHz. Consequently, it cannot tolerate voltage signals higher than 1.8 V. Applying
signals with higher voltage will damage your analyzer and is not covered by the
warranty.

The USB 3.0 external output has a short latency of 50 to 75 ns from when a trigger
occurs and when the output is asserted on the SMA connector. The output can be
asserted by a sophisticated matching system which provides a spectrum of functionality,
from simple matches all the way to complicated multi-state triggers.

The behavior of the output is configurable and can be set to:

• Set Low

• Set High

• Positive Pulse

• Negative Pulse

• Toggle (Initially Low)

• Toggle (Initially High)

When configured as a positive or negative pulse, the pulse width is 24 ns. For FW
versions before v1.10, the pulse width is 40 ns.

WARNING: The USB 2.0 Output is only rated for 3.3 V. Applying signals with
higher voltage will damage your analyzer and is not covered by the warranty.

The USB 2.0 external outputs are available on pins 5 through 8 on the Mini-DIN 9
connector. These outputs behave similarly to the digital outputs of the Beagle USB 480
analyzer as described in Section 3.4.4, except that the output level is 3 V.

Beagle Protocol Analyzer User Manual

65

3.3.7 Cross-Analyzer Sync

Overview

Multiple point analysis of a USB system is extremely helpful in a variety of development
scenarios. The most obvious example is hub development, where traffic is sent between
the hub and the host, as well as between the hub and the device.

Normally, clock drift prevents the reliable correlation of captured data from two different
analyzers. Synchronizing capture events (start, trigger, stop) on multiple analyzers also
proves difficult.

Beagle Cross-Analyzer Sync solves the challenges posed by multiple point analysis,
allowing users to easily and reliably monitor both sides of a USB hub, or any number of
points in a USB system. Two HDMI ports on the back of the Beagle USB 5000 analyzer
(Section 2.1.2.3) allow two or more analyzers to synchronize their capture timestamps,
as well as their capture start, capture trigger, and capture stop events.

Setup

Cross-Analyzer Sync is easy to use. Connect the SYNC OUT port on one Beagle USB
5000 analyzer to the SYNC IN port on another analyzer. Once two analyzers are
connected, adding more analyzers to the chain is simple. The following steps describe
the setup process.

1. Connect SYNC OUT on one analyzer to SYNC IN on another analyzer to begin a
sync chain.

2. Connect SYNC OUT on the last analyzer in the chain to SYNC IN on an
unconnected analyzer to extend the sync chain. Repeat this step as desired to
expand the sync chain.

Start Capture

Once a Cross-Analyzer Sync chain is setup, follow the steps below to start a
synchronized capture on each of the analyzers:

1. Follow steps 1-4 in Section 3.2 to place an analyzer in the SYNC_STANDBY state.
The order of analyzers on which this step is performed is not important.

Beagle Protocol Analyzer User Manual

66

2. Repeat step 1 for each analyzer in the sync chain. Capture will automatically start
on each analyzer once step 1 is completed for every analyzer in the sync chain.

Trigger Capture

Cross-Analyzer Sync allows multiple analyzers to be triggered, advancing from pre-
trigger to post-trigger, in a synchronized manner. An analyzer connected via Cross-
Analyzer Sync will output a trigger signal to other analyzers in the chain when its capture
is triggered.

The trigger signal can be ignored on a per-analyzer basis by software configuration
(Section 6.8.6.1), allowing an analyzer to remain in pre-trigger even if other analyzers
connected by Cross-Analyzer Sync have triggered. An analyzer configured to ignore
incoming trigger signals will still output a trigger signal to other analyzers on its own
capture trigger.

Stop Capture

Cross-Analyzer Sync allows multiple analyzers to stop capturing at the same time. An
analyzer connected via Cross-Analyzer Sync will output a stop signal to other analyzers
in the chain when its capture is stopped.

The stop signal can be ignored on a per-analyzer basis by software configuration
(Section 6.8.6.1), allowing an analyzer to continue capture even if other analyzers
connected by Cross-Analyzer Sync have stopped capture. An analyzer configured to
ignore incoming stop signals will still output a stop signal to other analyzers on its own
capture stop.

Software Release

An analyzer can be completely released from Cross-Analyzer Sync by software
configuration before capture (Section 6.8.6.1) or during capture (Section 6.8.6.2). An
analyzer released from Cross-Analyzer Sync by software will:

1. Not wait on other analyzers connected by Cross-Analyzer Sync when capture is
started.

2. Ignore Cross-Analyzer stop and Cross-Analyzer trigger signal inputs.

Beagle Protocol Analyzer User Manual

67

3. Not output Cross-Analyzer stop or Cross-Analyzer trigger signals.

Notes

Do not change the sync configuration by attaching or detaching HDMI cables from an
analyzer when capture is in progress. Disrupting HDMI cables during capture may result
in termination of capture and disconnection of an analyzer from software.

Cross-Analyzer Sync HDMI ports are only available on hardware v2.00 or later.

3.3.8 Match/Action System

The Beagle USB 5000 Protocol Analyzer features a multi-tiered matching system that
can perform one or more actions in response to a match. The USB 3.0 matching system
is separate from the USB 2.0 matching system.

USB 3.0 Matching

Within the USB 3.0 Matching framework, there are multiple tiers of matching. The first
level is Simple Matching which can match the occurrence of general packet types,
events, or errors and trigger the capture or assert the external output in response.

The next level is Complex Matching, which provides the a state-based facility to match
specific packet types and data patterns in addition to specific events. The standard
Beagle USB 5000 analyzer provides a single state and limited matching facilities. The
Advanced trigger option, extends the Complex Matching framework with multiple states
and extended matching facilities to build complex state machines.

USB 3.0 Simple Matching

With USB 3.0 simple matching, the Beagle USB 5000 analyzer is capable of matching:

• Link Commands

• Header Packets

• Data Payloads

• CRC Errors (CRC32, CRC12, CRC5 LCW, CRC5)

• Training Sequences (TS1, TS2, TSEQ)

• V Detected

• External Input (rising, falling)

• Reverse Polarity

Beagle Protocol Analyzer User Manual

BUS

68

• Termination Detected

• Scrambling Disabled

• LPFS

• PHY Error

PHY Error is a special-case bus event that will match the following errors:

• Disparity Error

• Elastic Buffer under-run or over-run

• 8b/10b Decode Error

While the PHY Errors collapses these 4 errors into a single match, it is possible to
distinguish some of the different errors in the captured data. When an elastic buffer
under-run error occurs, an EDB symbol (K28.3) is inserted into the data stream to fill the
under-run. When an 8b/10b Decode Error occurs, a SUB symbol (K28.4) is substituted in
place of the bad 10b symbol in the data stream.

It is possible to select multiple events to match the simple trigger. However, since a
capture can only be triggered once, in the case of multiple selected events, the first of
any of the selected events will trigger the capture.

When a match occurs in the Simple Triggers, it is also possible to assert the External
Output. The output can be asserted only once, when the trigger occurs, or every time the
simple triggers match.

USB 3.0 Complex Matching

The USB 3.0 complex matching system provides additional matching capabilities. There
are two variants of the complex matching system. The basic variants included with the
Standard Beagle USB 5000 analyzer offers a single state with one upstream data match
unit, one downstream data match unit, and one event match unit.

An optional advanced matching package extends the functionality of the complex
matching by providing up to eight states with up to three upstream data match units,
three downstream data match units, one event match unit, and one timer match unit per
state. Actual number of match units available per state will depend on the remaining
resources available.

States

The Complex Matching system provides up to 8 states. Each state is comprised of one
or more match units. Each match unit defines a specific matching criteria. Since a state
can transition to multiple other states, the order of precedence is significant. If multiple

Beagle Protocol Analyzer User Manual

69

match units match at the same time, the first match unit will have priority as to which
state is transitioned to.

Data Match Unit

A data match unit can match specific data packet types or data in either the upstream
direction or downstream direction. The types of data that can be matched are: link
commands, header packets, data packets, qualified data packets, and training
sequences. Within each of these packet types, specific subtypes or data patterns can be
defined. For example, under link commands, only "LGOOD_3" can be specified. For any
of the packet types, valid or invalid CRCs can be specified as part of match criteria of the
match unit.

Table 6 : Match Supported Packets

Packet Type Packet

Link Command LGOOD_n
LGOOD_[0-7]
LRTY
LBAD
LCRD_x
LCRD_[A-D]
LGO_Ux
LGO_U[1-3]
LAU
LXU
LPMA
LUP
LDN

Header Packet Link Management Packet
Transaction Packet
Data Packet Header
Isochronous Timestamp Packet

Data Packet Data Packet

Training Sequence TSEQ
TS1
TS2

Part of the criteria of a match unit is the ability to match for the negative criteria. For
example, a match unit can be set to match LGOOD_n only or match any other Link
Command packet NOT LGOOD_n.

The negative criteria normally only applies within a group of packets. In the previous
example, matching NOT LGOOD_n will only match any other link command that is not
an LGOOD_n. However, sometimes it is useful to be able to match any packet of any
type that is not an LGOOD_n. To do this, the match unit has the ability to match or not

Beagle Protocol Analyzer User Manual

70

match any other packet types. For example, it is possible to match a situation where an
ITP is followed by any packet that is not an LGOOD_n by setting the match unit to match
any packet that is NOT LGOOD_n.

For data packets, a specific data pattern is the basis of the match. It is possible to restrict
the scope of the match by limiting the match criteria to a specific device, stream,
endpoint, and/or the length of the data packet.

Event Match Unit

The event match unit can match any of the following events in either the upstream or
downstream direction: LFPS, Polarity Inversion, RX Termination, and Disable
Scrambling. The event match unit can also match V detection and the external input.

Timer Match Units

The timer match unit will match after a specific amount of time has elapsed. The timer
begins upon entering the state which declared it, and can run anywhere from a few
nanoseconds to half a minute. Using a multi-state trigger, a match can occur a set
amount of time after a specific event.

Counters

The execution of an a match units action can also be controlled by a counter. All match
units can be configured to execute its action only after a specific number of matches
have been made. For example, a match unit may not trigger the capture until 20 TS1
packets are seen.

A match unit can be further configured to trigger on every match after a set number of
matches. For example, a match unit can be configured to filter out all TSEQ after the
first 50. In this way, only the first 50 TSEQ packets would be seen in the capture, and all
subsequent TSEQs would be filtered out.

Actions

When a match units successfully makes a match, it can perform one or more actions.
The available actions are triggering the capture, asserting the external output, filtering
the matching data out, or going to a different state. The ability to go to a different state is
only available in the Advanced Complex Triggers option.

Each individual Match Unit in a state can have different actions which provides flexibility
of defining a complex multi-state matching trigger.

USB 2.0 Matching

The USB 2.0 matching system provides the user the capability of matching events,
packet types, packet data, or external input. The functionality of this system is based on
the Beagle USB 480 Protocol Analyzer's system with the addition of the ability for the
inputs and outputs to trigger the capture.

Beagle Protocol Analyzer User Manual

BUS

71

3.3.9 Capture Settings

The Beagle USB 5000 analyzer is the only USB protocol analyzer with the ability to
capture USB 3.0 and USB 2.0 data and stream it in real-time to the Analysis PC for
interactive display.

Real-time USB 3.0 Capturing

It is important to note that the downlink from the analyzer to the Analysis PC is only high-
speed USB operating at 480 Mbps. Theoretically, the SuperSpeed USB front-end is able
to operate at up to 5 Gbps. Given this disparity, there are several key technologies
involved in providing as close to a real-time experience as possible.

When capturing data, the Beagle analyzer has a highly efficient data stream that adds
very little overhead to the USB 3.0 and 2.0 data streams it is monitoring. This low
overhead reduces the amount of data that needs to be uploaded.

The high-speed USB driver has been highly optimized to deliver as close to the
theoretical maximum performance as possible. The Beagle analyzer is able to sustain
download speeds of up to 40 MB/s. Given that USB traffic being monitored tends to
occur in bursts, the Beagle analyzer is able to catch up quickly, and eventually be up-to-
date, during gaps in the USB bus being monitored.

When there are large streams of the USB 3.0 data, the Beagle USB 5000 analyzer will
make full use of its 2 GB buffer to keep pace with the bus under analysis. However, the
analyzer may reach a point where the memory buffer will be filled and no additional data
can be captured. At this point the capture of new data will stopped, and all remaining
data will be downloaded to the PC.

Capture Modes

The Beagle USB 5000 analyzer is able to capture USB 3.0 or USB 2.0 data. With an
additional upgrade, the Beagle analyzer can capture both USB 3.0 and USB 2.0
simultaneously.

Capture Buffer

The Beagle USB 5000 analyzer includes a standard 2 GB memory buffer. In the future,
the amount of memory can be upgraded to 4 GB.

Not all the memory needs to be used when capturing USB data. The amount of memory
allocated to capturing data in the Beagle analyzer can be configured to limit the size of
the overall capture.

The memory dedicated to capturing data can be further allocated into pre-trigger and
post-trigger buffers.

Beagle Protocol Analyzer User Manual

72

Infinite Capture

Since the Beagle analyzer constantly streams data to the Analysis PC, it is possible for
the Beagle analyzer to be configured for infinite capture. As long as the Beagle analyzer
is able to keep up with the USB 3.0 traffic, it can theoretically continue capturing data
indefinitely. The total capture size will eventually be limited by the amount of memory in
the Analysis computer.

3.3.10 Capture Issues

Signal Integrity

The Beagle USB 5000 analyzer achieves bit lock and symbol lock with the signal
received from the host and device like any other device. Bad signals on the USB 3.0 bus
can cause problems for the analyzer. For this reason, it is recommended that high-
quality, short cables are used with large gauge conductors.

3.4 Beagle USB 480 Protocol Analyzer Specifics

Aside from standard real-time capture, the Beagle USB 480 analyzer provides a number
of other features. These features include bus event monitoring, digital inputs and
outputs, hardware filtering, as well as multiple capture modes.

3.4.1 Bus Events

The Beagle USB 480 analyzer provides users with insight into events that occur on the
bus. These bus events include suspend, resume, reset, speed changes (including high-
speed handshake), and connect/disconnect events. Furthermore, events that are
unexpected (i.e., do not conform to the USB spec) are tagged with a specific status code
to bring that to the attention of the user. The Beagle USB 480 analyzer also has the
ability to identify imperfect resets, like a Tiny J associated with the high-speed
handshake. A Tiny J (or K) may also be tagged when not in a high-speed handshake
situation if the reset is not fully at an SE0, but is instead floating above the high-speed
receiver threshold. This allows users to see if the host is driving a reset signal that is
close enough to ground voltage. Alternatively, if this amount of detail on reset signals is
not desired, the auto speed-detection could be disabled, and locked to the specific
speed of interest.

Where applicable, bus events are also returned with a duration. In most cases, this
duration is self-explanatory, such as in the duration of a Chirp K or a keep-alive bus
state. However, some clarification is required for the reported duration of suspend and
resume events.

For suspend events, the Beagle USB 480 analyzer will return the duration of the event
as it is measured from the devices perspective. For example, in a case where the bus is
idle for 8 ms, the analyzer will return 5 ms for the duration of the suspend; this

Beagle Protocol Analyzer User Manual

73

corresponds with the fact that the device can only enter the suspend state after 3 ms of
bus idle and is therefore suspended for 5 ms.

For resume events, the Beagle analyzer will return the duration of the K portion of the
resume signaling. Rather than combine this duration with the ensuing SE0, this scheme
provides users with the ability to determine the individual durations of each segment of
the resume event. Specifically the user can refer to the start time of the resume event,
the duration of the resume event (time of K state), and the start time of the subsequent
event or packet.

For more details on USB bus events refer to Section 1.1.2 and the USB 2.0 spec.

3.4.2 OTG Events

The Beagle USB 480 analyzer has the ability to detect On-The-Go (OTG) events. These
events include the Host Negotiation Protocol (HNP) and each stage of the Session
Request Protocol (SRP). For more details on these protocols, see Section 1.1.3.11.

A HNP event will be returned upon seeing the correct initial conditions, and then
detecting a correctly timed SE0 followed by the full-speed J. If the new host does not
issue a reset within the specified time, the HNP event will be returned with an error
indication.

There are two stages of the SRP, and a separate event is returned for each of them.
Upon detecting a data-line pulse, the Beagle software will return an event corresponding
to this condition. After detecting a data-line pulse, the software will report a V pulse if
it is seen on the bus. Note that this means that any V pulse that occurs without a
preceding data-line pulse will not be reported since it is completely out of the OTG
specification. If the SRP is successful, it will be followed by a host connect event. If it is
unsuccessful, then it will be followed by a host disconnect event.

3.4.3 Digital Inputs

Digital inputs provide a means for users to insert events into the data stream. There are
four digital inputs that can be enabled individually. Whenever an enabled input changes
state it will issue an event and be tagged with a timestamp of when the input was
interpreted by the Beagle USB 480 analyzer. Digital inputs cannot exceed a rate of
30 MHz. Digital inputs that occur faster than that are not guaranteed to be interpreted
correctly by the Beagle analyzer. Also, only one digital input event may occur per active
packet. All other digital input events can only be handled after the packet has completed.
Digital inputs, although guaranteed to have the correct timestamp given the previous
conditions, have the possibility of being presented out of order because they are
provided randomly by the user and have no direct correlation to the bus.

Note: the digital inputs are susceptible to cross-talk if they are not being actively driven.
A situation like this could occur if a digital input has been enabled, but has not been tied
to a signal. Any other nearby signal (i.e., other digital inputs or outputs) could cause the

Beagle Protocol Analyzer User Manual

BUS

BUS

74

input to activate. It is recommended that all undriven digital inputs be disabled or tied to
ground.

For hardware specifications of the digital inputs refer to Section 3.4.3.

3.4.4 Digital Outputs

Digital outputs provide a means for users to match certain events and to send output to
other devices, such as oscilloscopes. In this way, users can synchronize events on the
bus with other signals they may be measuring.

Digital outputs, like digital inputs, are susceptible to cross-talk if left disabled. It is
recommended that users do not attempt to use disabled digital outputs on other devices,
as their characteristics are not specified. Either disconnect all connections to disabled
digital outputs, or tie those outputs to ground.

There are four digital outputs that are user configurable. Each digital output has the
option of being enabled, active high, or active low. Furthermore, each output can activate
on specific conditions described below.

• Digital Output 1 will match whenever the capture is running.

• Digital Output 2 will match whenever a packet is detected on the bus.

• Digital Output 3 will match when the selected PID, device address, and endpoint
match.

• Digital Output 4 will match when the selected PID, device address, endpoint, and
data pattern match.

The digital outputs activate as soon as their match can be fully confirmed. Thus, Pins 1
and 2 will match as soon as the capture activates or rxactive goes high, respectively.
However, Pins 3 and 4 must assure a match of all of their characteristics. Therefore, only
once all possible PIDs, device address, and endpoints of a given packet are checked
completely can the match be confirmed and the output asserted. The assertion of
matched data on Pin 4 must wait until the end of the data packet to assure a match.
Packets that are shorter then what is defined by the user to match will activate Pin 4 if all
the data up to that point matched correctly.

Hardware specifications for the digital outputs are provided in Section 3.4.4.

3.4.5 Hardware Filtering

Hardware filters provide users with the ability to suppress data-less transactions. When
possible, the hardware filters will discard all packets that meet the filtering criteria. These
filters can save a significant amount of capture memory when used, and are highly
recommended when capture-memory capacity is a concern.

Beagle Protocol Analyzer User Manual

75

Another benefit of the hardware filters is that they reduce the amount of traffic between
the analysis computer and the Beagle analyzer. This is especially useful for situations
where the analysis computer has a hard time keeping up with the bandwidth
requirements of the Beagle analyzer. For example, the analysis computer may be
running other applications or it may have other devices attached to the same bus.

There are six different hardware filters that can be used independently or in conjunction
with one another. They must simply be enabled by the user. Their functionality is
described below.

• SOF Filtering will remove all Start-of-Frame (SOF) tokens from the data stream.
Please note that enabling the SOF filter will forfeit the ability to detect suspend and
high-speed disconnects conditions on the bus.

• IN Filtering will attempt to remove all IN + ACK and IN + NAK pairs.

• PING Filtering will attempt to remove all PING + NAK pairs.

• PRE Filtering will remove all PRE tokens.

• SPLIT Filtering will attempt to remove many of the data-less SPLIT transactions.
This filter will attempt to discard:

- SSPLIT + IN (for isochronous and interrupt transfers)

- SSPLIT + IN + ACK (for bulk and control transfers)

- CSPLIT + OUT + NYET

- CSPLIT + SETUP + NYET

- CSPLIT + IN + NAK

- CSPLIT + IN + NYET

• Self Filtering will remove all packets intended for devices with the same device
address as the Beagle analyzer. Due to the architecture of USB, when the Beagle
analyzer is sniffing the same high-speed bus on which it is connected, it will see
its own traffic on the Capture side (for more details refer to Section 1.1.2.1). This
filter gives the user the opportunity to remove that traffic out of the reported data
stream. This filter, however, is only effective if the Beagle USB 480 analyzer is in
fact connected to the same bus as it is analyzing. If the Beagle analyzer is
connected to a different host controller, this filter should be disabled, as there is a
probability that another device on the Target bus will match the Beagle analyzers
device address, and data to that device will be lost.

Filters and Digital I/O

There are a couple of issues regarding the hardware filtering and digital I/O that are
worth noting. Digital outputs are computed before any filtering takes place. This means

Beagle Protocol Analyzer User Manual

76

that if an output is set to activate on a normally filtered packet, the output will still activate
even if the packet is never seen by the user. For example, if SOF filtering is enabled,
digital outputs set to activate upon seeing an SOF PID will still activate when an SOF is
on the bus.

Digital inputs can potentially invalidate a filter. The filters that are susceptible to this are
the IN, PING, and SPLIT filters. These filters suppress entire transactions based on the
sequence of packets on the bus. If an input trigger occurs at any time during this
sequence, the entire transaction is sent to the user. As an example of this, if IN + NAK
pair filtering is enabled and a digital input event occurs at any time between the start of
the IN token and the very end of the NAK handshake, the entire transaction will be
reported to the user. However, if no digital input event occurs, the IN + NAK pair will be
discarded.

3.4.6 Capture Modes

The Beagle USB 480 Protocol Analyzer provides the user with three different capture
modes: real-time capture, real-time capture with overflow protection, and delayed-
download.

Real-time Capture

Real-time capture is the default capture mode. It provides the user with real-time status
of the bus being monitored. The real-time capture can be stopped by three methods.

• The first method is by having the user end the capture through a bg_disable()
call (or though the Beagle Data Center software).

• The second method is if the Beagle analyzer loses power. This is not the
recommended method for stopping a capture.

• Finally, the capture will be automatically stopped by the Beagle USB 480 analyzer
if the 64 MB hardware buffer (256 MB in Power models) fills to capacity. In this
situation, the Beagle analyzer will no longer capture new data from the monitored
bus. Instead, calls to bg_usb480_read() will only retrieve whatever data is
remaining in the buffer. The last call of bg_usb480_read() will return a
BG_READ_USB_END_OF_CAPTURE indicating that the capture has stopped and
that there is no new data. The hardware buffer may fill in conditions where the
analysis computer is not reading the data from the Beagle analyzer as fast as it is
capturing new data.

Real-time Capture with Overflow Protection

Real-time Capture with Overflow Protection is essentially identical to real-time capture
except that it allows for more efficient use of the hardware buffer when it nears full
capacity. When the buffer is near capacity, the Beagle USB 480 analyzer will truncate all
incoming packets to 4 bytes. The true length of the packet will still be reported to the

Beagle Protocol Analyzer User Manual

77

user, however only the first 4 bytes of the given packet will be returned. If the user is
using a custom application, the remainder of the packet field will be filled with 0s.
However, all packets captured when in truncation mode will be tagged with the
BG_READ_USB_TRUNCATION_MODE status code bit. Because packets are truncated to
4 bytes in length, only DATA packets have the potential of being truncated. All tokens,
handshakes, etc.will still be shown in their entirety.

This mode truncates large packets reducing further usage of the hardware buffer. This
allows the analysis PC a chance to siphon more data off of the Beagle analyzer before
the hardware buffer becomes completely full. In other words the analysis port can catch
up to the target traffic. If the buffer usage drops below a certain threshold, the analyzer
will automatically return to normal operation and cease the truncation of long packets.

Delayed-download Capture

Delayed-download capture does not stream data to the analysis computer in real time,
but instead saves all of the data in the 64 MB hardware buffer until the user is ready to
download it. The size of the capture is clearly limited by the hardware buffers max
capacity, so it is recommended to use the hardware filters to limit data-less transactions
when appropriate.

The delayed-download capability will especially benefit those users that are analyzing
high-speed traffic, but are only using a single computer with a single host controller for
both the analysis computer and the target host computer. As described previously,
devices on the same host controller must share the available bandwidth. Also, all high-
speed devices on the same host controller will see all downstream traffic. Therefore
using delayed-download will limit the Beagle analyzer's participation on the bus. In fact, if
no other functions are called between the enable of the capture and the disable, there
will be nearly no traffic at all between the PC and analyzer. The only traffic will be at the
very start and end of the capture session.

The delayed-download will stop automatically once the buffer has reached capacity. It
may also be stopped at any time by the user by calling the bg_usb480_read function.
Polling of the status of the buffer is possible through bg_usb480_hw_buffer_stats
(), function call. Polling the Beagle analyzer will create traffic on the bus, and thus take
up some of the available bandwidth. Faster polling rates will clearly take up more
bandwidth, and thus if users wish to minimize their impact on the bus, they should not
poll the buffer at all. Regardless, the polling traffic itself can be filtered from the analysis
data by using the hardware based Self Filter.

3.4.7 Match/Action System

The Beagle USB 480 Protocol Analyzer provides a simple matching system that can
perform one or more actions in response to a match. The Ultimate Edition of the Beagle
USB 480 Power Protocol Analyzer features Complex Matching which provides a state-
based system for matching specific packet types and data patterns in addition to specific
events. It also includes the Advanced trigger option, which extends the Complex

Beagle Protocol Analyzer User Manual

78

Matching framework with multiple states and extended matching facilities to build
complex state machines.

USB 2.0 Simple Matching

The USB 2.0 simple matching system is capable of monitoring and triggering capture on
USB 2.0 digital inputs, as well as asserting digital outputs and triggering capture on user-
provided packet/data match patterns.

USB 2.0 Complex Matching

The USB 2.0 complex matching system provides a state-based facility to match specific
packet types and data patterns in addition to specific events. The Ultimate Edition of the
Beagle USB 480 Power Protocol Analyzers allows up to 8 states. Each state may have 4
data matching units, 1 timer match unit, and 1 asynchronous event match unit. This
state-based system is used in an identical manner as the USB 3.0 Complex Matching
system. See Section 3.3.8 for a description of how that is used.

3.4.8 Current/Voltage Monitoring

The Beagle USB 480 Power Protocol Analyzers can capture V current and voltage
readings in addition to USB data. The readings are embedded in the same data stream
as the USB traffic returned by the analyzer. This functionality is tightly integrated into the
Data Center Software which has been expanded to include a monitor window for real-
time display and continuous tracking of the data. The monitor also offers an interactive,
bi-directional way to correlate events on the V and USB traffic.

Hardware specifications for Current/Votage Monitoring are provided in Section 2.2.5

3.4.9 V Trigger

The Beagle USB 480 Power Protocol Analyzer, Ultimate Edition extends Complex
Matching to include the ability to monitor V voltage or current. Users can configure
the analyzer to trigger on the rising and/or falling edge(s) of a pre-set voltage or current
threshold of the V . The pre-set threshold can be included in any state of the Complex
Matching state machine and each state can vary the edge(s) of the threshold it detects.
It is another tool for engineers to perform complex debugging and optimize the power
consumption profile of their devices.

3.5 Beagle I C/SPI/MDIO Protocol Analyzer Specifics

3.5.1 Sampling Rate

Unlike the Beagle USB analyzers, the sampling rate of the Beagle I C/SPI/MDIO
analyzer is configurable. In order to accurately capture data the sampling rate must be
properly set. For SPI and MDIO analysis all data lines are registered using the clock line

Beagle Protocol Analyzer User Manual

BUS

BUS

BUS

BUS

BUS

2

2

79

of the bus. The internal sampling clock is then used to retrieve the data. The sampling
rate should be set to at least twice the bit rate, but preferably faster (4-5 times) if
possible. Higher sampling rates can have the added benefit of increasing timing
precision.

Due to the architecture of I C, there are specific bus events that occur between the
standard bit-times. In order to capture these transitions, the bus must be oversampled
independent of the clock line of the bus. A sampling rate of five to ten times the bus bit
rate is recommended. This should not be a problem, however, since the minimum
sampling rate of the Beagle I C/SPI/MDIO analyzer is 10 MHz, and I C buses usually
operate at less than 1 MHz frequencies.

The one caveat to setting the sampling rate to very high values is that higher sampling
rates create more traffic on the analysis USB that connects the analyzer to the host PC.
This may or may not affect performance depending on the analysis PC configuration.

Beagle Protocol Analyzer User Manual

2

2 2

80

4 Software

4.1 Compatibility

4.1.1 Overview

The Beagle software is offered as a 32-bit or a 64-bit Dynamic Linked Library (or shared
object). The specific compatibility for each operating system is discussed below. Be sure
the device driver has been installed before plugging in the Beagle analyzer.

4.1.2 Windows Compatibility

The Beagle software is compatible with Windows XP (SP2 or later, 32-bit and 64-bit),
Windows Vista (32-bit and 64-bit), and Windows 7 (32-bit and 64-bit). Windows 2000
and legacy 16-bit Windows 95/98/ME operating systems are not supported.

4.1.3 Linux Compatibility

The Beagle software is compatible with all standard 32-bit and 64-bit distributions of
Linux with kernel 2.6 and integrated USB support. When using the 32-bit library on a 64-
bit distribution, the appropriate 32-bit system libraries are also required.

4.1.4 Mac OS X Compatibility

The Beagle software is compatible with Intel versions of Mac OS X 10.4 Tiger,
10.5 Leopard, and 10.6 Snow Leopard. Installation of the latest available update is
recommended.

4.2 Windows USB Driver

4.2.1 Driver Installation

To install the appropriate USB communication driver under Windows, use the Total
Phase USB Driver Installer before plugging in any device. The driver installer can be
found either on the CD-ROM (use the HTML based guide that is opened when the CD is
first loaded to locate the Windows installer), or in the Downloads section of the Beagle
analyzer product page on the Total Phase website.

After the driver has been installed, plugging in a Beagle analyzer for the first time will
cause the analyzer to be installed and associated with the correct driver. The following

Beagle Protocol Analyzer User Manual

81

steps describe the feedback the user should receive from Windows after a Beagle
analyzer is plugged into a system for the first time:

Windows XP:

1. The Found New Hardware notification bubble will pop up from the system tray
and state that the "Total Phase Beagle Protocol Analyzer" has been detected.
Note that installation may take a while (30-60 seconds per device).

2. When the installation is complete, the Found New Hardware notification bubble
will again pop up and state that "your new hardware is installed and ready to use."

Windows Vista/7:

1. A notification bubble will pop up from the system tray and state that Windows is
"installing device driver software."

2. When the installation is complete, the notification bubble will again pop up and
state that the "device driver software installed successfully."

To confirm that the device was correctly installed, check that the device appears in the
"Device Manager." To navigate to the "Device Manager" screen, select "Control Panel |
System Properties | Hardware | Device Manager" for Windows XP, or select "Control
Panel | Hardware and Sound | Device Manager" for Windows Vista/7. The Beagle
analyzer should appear under the "Universal Serial Bus Controllers" section for Windows
XP/Vista/7.

4.2.2 Driver Removal

The USB communication driver can be removed from the operating system by using the
Windows program removal utility. Instructions for using this utility can be found below.
Alternatively, the Uninstall option found in the driver installer can also be used to remove
the driver from the system.

Note: it is critical that all Total Phase devices have been removed from your system
before removing the USB drivers.

Windows XP:

1. Select "Control Panel | Add or Remove Programs"

2. Select "Total Phase USB Driver" and select "Change/Remove"

Beagle Protocol Analyzer User Manual

82

3. Follow the instructions in the uninstaller

Windows Vista/7:

1. Select "Control Panel | Uninstall a program"

2. Right click on "Total Phase USB Driver" and select "Uninstall/Change"

3. Follow the instructions in the uninstaller

4.3 Linux USB Driver

The Beagle communications layer under Linux does not require a specific kernel driver
to operate. However, the user must ensure independently that the libusb library is
installed on the system since the Beagle library is dynamically linked to libusb.

Most modern Linux distributions use the udev subsystem to help manipulate the
permissions of various system devices. This is the preferred way to support access to
the Beagle analyzer such that the device is accessible by all of the users on the system
upon device plug-in.

For legacy systems, there are two different ways to access the Beagle analyzer, through
USB hotplug or by mounting the entire USB filesystem as world writable. Both require
that /proc/bus/usb is mounted on the system which is the case on most standard
distributions.

4.3.1 UDEV

Support for udev requires a single configuration file that is available on the software CD,
and also listed on the Total Phase website for download. This file is 99-
totalphase.rules. Please follow the following steps to enable the appropriate
permissions for the Beagle analyzer.

1. As superuser, unpack 99-totalphase.rules to /etc/udev/rules.d

2. chmod 644 /etc/udev/rules.d/99-totalphase.rules

3. Unplug and replug your Beagle analyzer(s)

4.3.2 USB Hotplug

USB hotplug requires two configuration files which are available on the software CD, and
also listed on the Total Phase website for download. These files are: beagle and
beagle.usermap. Please follow the following steps to enable hotplugging.

1. As superuser, unpack beagle and beagle.usermap to /etc/hotplug/usb

Beagle Protocol Analyzer User Manual

83

2. chmod 755 /etc/hotplug/usb/beagle

3. chmod 644 /etc/hotplug/usb/beagle.usermap

4. Unplug and replug your Beagle analyzer(s)

5. Set the environment variable USB_DEVFS_PATH to /proc/bus/usb

4.3.3 World-Writable USB Filesystem

Finally, here is a last-ditch method for configuring your Linux system in the event that
your distribution does not have udev or hotplug capabilities. The following procedure is
not necessary if you were able to exercise the steps in the previous subsections.

Often, the /proc/bus/usb directory is mounted with read-write permissions for root
and read-only permissions for all other users. If an non-privileged user wishes to use the
Beagle analyzer and software, one must ensure that /proc/bus/usb is mounted with
read-write permissions for all users. The following steps can help setup the correct
permissions. Please note that these steps will make the entire USB filesystem world
writable.

1. Check the current permissions by executing the following command:
ls -al /proc/bus/usb/001

2. If the contents of that directory are only writable by root, proceed with the
remaining steps outlined below.

3. Add the following line to the /etc/fstab file:

 none /proc/bus/usb usbfs defaults,devmode=0666 0 0

4. Unmount the /proc/bus/usb directory using umount

5. Remount the /proc/bus/usb directory using mount

6. Repeat step 1. Now the contents of that directory should be writable by all users.

7. Set the environment variable USB_DEVFS_PATH to /proc/bus/usb

4.4 Mac OS X USB Driver

The Beagle communications layer under Mac OS X does not require a specific kernel
driver to operate. Mac OS X 10.5 Leopard, 10.6 Snow Leopard, 10.7 Lion, and
10.8 Mountain Lion are supported. It is typically necessary to ensure that the user
running the software is currently logged into the desktop. No further user configuration
should be necessary.

Beagle Protocol Analyzer User Manual

84

4.5 USB Port Assignment

The Beagle analyzer is assigned a port on a sequential basis. The first analyzer is
assigned to port 0, the second is assigned to port 1, and so on. If a Beagle analyzer is
subsequently removed from the system, the remaining analyzers shift their port numbers
accordingly. Hence with n Beagle analyzers attached, the allocated ports will be
numbered from 0 to n1.

4.5.1 Detecting Ports

As described in following API documentation chapter, the bg_find_devices routine
can be used to determine the mapping between the physical Beagle analyzers and their
port numbers.

4.6 Beagle Dynamically Linked Library

4.6.1 DLL Philosophy

The Beagle DLL provides a robust approach to allow present-day Beagle-enabled
applications to interoperate with future versions of the device interface software without
recompilation. For example, take the case of a graphical application that is written to
monitor I C, SPI, MDIO, or USB through a Beagle analyzer. At the time the program is
built, the Beagle software is released as version 1.2. The Beagle interface software may
be improved many months later resulting in increased performance and/or reliability; it is
now released as version 1.3. The original application need not be altered or recompiled.
The user can simply replace the old Beagle DLL with the newer one. How does this
work? The application contains only a stub which in turn dynamically loads the DLL on
the first invocation of any Beagle API function. If the DLL is replaced, the application
simply loads the new one, thereby utilizing all of the improvements present in the
replaced DLL.

On Linux, the DLL is technically known as a shared object (SO).

4.6.2 DLL Location

Total Phase provides language bindings that can be integrated into any custom
application. The default behavior of locating the Beagle DLL is dependent on the
operating system platform and specific programming language environment. For
example, for a C or C++ application, the following rules apply:

On a Windows system, this is as follows:

1. The directory from which the application binary was loaded.

2. The applications current directory.

Beagle Protocol Analyzer User Manual

2

85

3. 32-bit system directory (for a 32-bit application). Examples:

◦ c:\Windows\System32 [Windows XP/Vista/7 32-bit]

◦ C:\Windows\System64 [Windows XP 64-bit]

◦ c:\Windows\SysWow64 [Windows Vista/7 64-bit]

4. 64-bit system directory (for a 64-bit application). Examples:

◦ C:\Windows\System32 [Windows XP/Vista/7 64-bit]

5. The Windows directory. (Ex: c:\Windows)

6. The directories listed in the PATH environment variable.

On a Linux system this is as follows:

1. First, search for the shared object in the application binary path. If the /proc
filesystem is not present, this step is skipped.

2. Next, search in the applications current working directory.

3. Search the paths explicitly specified in LD_LIBRARY_PATH.

4. Finally, check any system library paths as specified in
/etc/ld.so.conf and cached in /etc/ld.so.cache.

On a Mac OS X system this is as follows:

1. First, search for the shared object in the application binary path.

2. Next, search in the applications current working directory.

3. Search the paths explicitly specified in DYLD_LIBRARY_PATH.

4. Finally, check the /usr/lib and /usr/local/lib system library paths.

If the DLL is still not found, the BG_UNABLE_TO_LOAD_LIBRARY error will be returned
by the binding function.

4.6.3 DLL Versioning

The Beagle DLL checks to ensure that the firmware of a given Beagle analyzer is
compatible. Each DLL revision is tagged as being compatible with firmware revisions
greater than or equal to a certain version number. Likewise, each firmware version is
tagged as being compatible with DLL revisions greater than or equal to a specific version
number.

Here is an example.

Beagle Protocol Analyzer User Manual

86

 DLL v1.20: compatible with Firmware >= v1.15
 Firmware v1.30: compatible with DLL >= v1.20

Hence, the DLL is not compatible with any firmware less than version 1.15 and the
firmware is not compatible with any DLL less than version 1.20. In this example, the
version number constraints are satisfied and the DLL can safely connect to the target
firmware without error. If there is a version mismatch, the API calls to open the device
will fail. See the API documentation for further details.

4.7 Rosetta Language Bindings: API Integration into
Custom Applications

4.7.1 Overview

The Beagle Rosetta language bindings make integration of the Beagle API into custom
applications simple. Accessing a Beagle analyzer's functionality simply requires function
calls to the Beagle API. This API is easy to understand, much like the ANSI C library
functions, (e.g., there is no unnecessary entanglement with the Windows messaging
subsystem like development kits for some other embedded tools).

First, choose the Rosetta bindings appropriate for the programming language. Different
Rosetta bindings are included with the software distribution on the distribution CD. They
can also be found in the software download package available on the Total Phase
website. Currently the following languages are supported: C/C++, Python, Visual
Basic 6, Visual Basic .NET, and C#.

Next, follow the instructions for each language binding on how to integrate the bindings
with your application build setup. As an example, the integration for the C language
bindings is described below. (For information on how to integrate the bindings for other
languages, please see the example code included on the distribution CD and also
available for download on the Total Phase website.)

1. Include the beagle.h file included with the API software package in any C or C+
+ source module. The module may now use any Beagle API call listed in
beagle.h.

2. Compile and link beagle.c with your application. Ensure that the include path for
compilation also lists the directory in which beagle.h is located if the two files
are not placed in the same directory.

3. Place the Beagle DLL, included with the API software package, in the same
directory as the application executable or in another directory such that it will be
found by the previously described search rules.

Beagle Protocol Analyzer User Manual

87

4.7.2 Versioning

Since a new Beagle DLL can be made available to an already compiled application, it is
essential to ensure the compatibility of the Rosetta binding used by the application (e.g.,
beagle.c) against the DLL loaded by the system. A system similar to the one
employed for the DLL-Firmware cross-validation is used for the binding and DLL
compatibility check.

Here is an example.

 DLL v1.20: compatible with Binding >= v1.10
 Binding v1.15: compatible with DLL >= v1.15

The above situation will pass the appropriate version checks. The compatibility check is
performed within the binding. If there is a version mismatch, the API function will return
an error code, BG_INCOMPATIBLE_LIBRARY.

4.7.3 Customizations

While provided language bindings stubs are fully functional, it is possible to modify the
code found within this file according to specific requirements imposed by the application
designer.

For example, in the C bindings one can modify the DLL search and loading behavior to
conform to a specific paradigm. See the comments in beagle.c for more details.

4.8 Application Notes

4.8.1 Receive Saturation

Once enabled, the Beagle analyzer is constantly monitoring data on the target bus.
Between calls to the Beagle API, these messages must be buffered somewhere in
memory. This is accomplished on the analysis computer, courtesy of the operating
system. Naturally the buffer is limited in size and once this buffer is full, data will be
dropped. An overflow can occur when the Beagle analyzer receives data faster than the
rate that it is processed – the receive link is "saturated." The system is most susceptible
to saturation when monitoring large amounts of traffic over USB or high-speed SPI bus.

4.8.2 Threading

The Beagle DLL is designed for single-threaded environments so as to allow for
maximum cross-platform compatibility. If the application design requires multi-threaded
use of the Beagle analyzer's functionality, each Beagle API call can be wrapped with a
thread-safe locking mechanism before and after invocation.

Beagle Protocol Analyzer User Manual

88

It is the responsibility of the application programmer to ensure that the Beagle analyzer
open and close operations are thread-safe and cannot happen concurrently with any
other Beagle analyzer operations. However, once a Beagle analyzer is opened, all
operations to that device can be dispatched to a separate thread as long as no other
threads access that same Beagle analyzer.

Beagle Protocol Analyzer User Manual

89

5 Firmware

5.1 Philosophy

The firmware included with the Beagle analyzer provides for the analysis of the
supported protocols. It is installed at the factory during manufacturing. Some parts of the
firmware can be updated automatically by the software. Other pieces of the firmware
require a device upgrade utility. In those cases, the Beagle software automatically
detects firmware compatibility and will inform the user if an upgrade is required.

5.2 Procedure

Firmware upgrades should be conducted using the procedure specified in the
README.txt that accompanies the particular firmware revision.

Beagle Protocol Analyzer User Manual

90

6 API Documentation

6.1 Introduction

The API documentation describes the Beagle Rosetta C bindings.

6.2 General Data Types

The following definitions are provided for convenience. The Beagle API provides both
signed and unsigned data types as well as single- and double-precision floating-point
numbers.

 typedef unsigned char u08;
 typedef unsigned short u16;
 typedef unsigned int u32;
 typedef unsigned long long u64;
 typedef signed char s08;
 typedef signed short s16;
 typedef signed int s32;
 typedef signed long long s64;
 typedef float f32;
 typedef double f64;

6.3 Notes on Status Codes

Most of the Beagle API functions can return a status or error code back to the caller. The
complete list of status codes is provided at the end of this chapter. All of the error codes
are assigned values less than 0, separating these responses from any numerical values
returned by certain API functions.

Each API function can return one of two error codes with respect to the loading of the
Beagle DLL, BG_UNABLE_TO_LOAD_LIBRARY and BG_INCOMPATIBLE_LIBRARY. If
these status codes are received, refer to the previous sections in this datasheet that
discuss the DLL and API integration of the Beagle software. Furthermore, all API calls
can potentially return the errors BG_UNABLE_TO_LOAD_DRIVER or
BG_INCOMPATIBLE_DRIVER. If either of these errors are seen, please make sure the
driver is installed and of the correct version. Where appropriate, compare the language
binding versions (BG_HEADER_VERSION found in beagle.h and BG_CFILE_VERSION
found in beagle.c) to verify that there are no mismatches. Next, ensure that the
Rosetta language binding (e.g., beagle.c and beagle.h) are from the same release
as the Beagle DLL. If all of these versions are synchronized and there are still problems,
please contact Total Phase support for assistance.

Beagle Protocol Analyzer User Manual

91

Note that any API function that accepts a Beagle handle can potentially return the error
code BG_INVALID_HANDLE if the handle does not correspond to a valid Beagle
analyzer that has already been opened. If this error is received, check the application
code to ensure that the bg_open command returned a valid handle and that this handle
was not corrupted before being passed to the offending API function.

Finally, any API call that communicates with a Beagle analyzer can also return the error
BG_COMMUNICATION_ERROR. This means that while the Beagle handle is valid and the
communication channel is open, there was an error communicating with the device. This
is possible if the device was unplugged while being used.

If either the I C, SPI, MDIO, or USB subsystems have been disabled by bg_disable, all
other API functions that interact with I C, SPI, MDIO, and USB will return
BG_I2C_NOT_ENABLED, BG_SPI_NOT_ENABLED, BG_MDIO_NOT_ENABLED, or
BG_USB_NOT_ENABLED, respectively.

These common status responses are not reiterated for each function. Only the error
codes that are specific to each API function are described below.

All of the possible error codes, along with their values and status strings, are listed
following the API documentation.

6.4 General

6.4.1 Interface

Find Devices (bg_find_devices)

 int bg_find_devices (int num_devices,
 u16 * devices);

Get a list of ports to which Beagle devices are attached.

Arguments

num_devices maximum number of devices to return

devices array into which the port numbers are returned

Return Value

This function returns the number of devices found, regardless of the array size.

Specific Error Codes

None.

Beagle Protocol Analyzer User Manual

2

2

92

Details

Each element of the array is written with the port number.

Devices that are in use are ORed with BG_PORT_NOT_FREE (0x8000). Under
Linux, such devices correspond to Beagle analyzers that are currently in use. Under
Windows, such devices are currently in use, but it is not known if the device is a
Beagle analyzer.

Example:

Devices are attached to port 0, 1, 2
ports 0 and 2 are available, and port 1 is in-use.
array => { 0x0000, 0x8001, 0x0002 }

If the input array is NULL, it is not filled with any values.

If there are more devices than the array size (as specified by nelem), only the first
nelem port numbers will be written into the array.

Find Devices (bg_find_devices_ext)

 int bg_find_devices_ext (int num_devices,
 u16 * devices,
 int num_ids,
 u32 * unique_ids);

Get a list of ports and unique IDs to which Beagle devices are attached.

Arguments

num_devices maximum number of devices to return

devices array into which the port numbers are returned

num_ids maximum number of device IDs to return

unique_ids array into which the unique IDs are returned

Return Value

This function returns the number of devices found, regardless of the array sizes.

Specific Error Codes

None.

Details

Beagle Protocol Analyzer User Manual

93

This function is the same as bg_find_devices() except that it also returns the
unique IDs of each Beagle device. The IDs are guaranteed to be non-zero if valid.

The IDs are the unsigned integer representation of the 10-digit serial numbers.

The number of devices and IDs returned in each of their respective arrays is
determined by the minimum of num_devices and num_ids. However, if either
array is NULL, the length passed in for the other array is used as-is, and the NULL
array is not populated. If both arrays are NULL, neither array is populated, but the
number of devices found is still returned.

Open a Beagle analyzer (bg_open)

 Beagle bg_open (int port_number);

Open the Beagle port.

Arguments

port_number The Beagle analyzer port number. This port number is the
the same as the one obtained from the
bg_find_devices() function. It is a zero-based
number.

Return Value

This function returns a Beagle handle, which is guaranteed to be greater than zero if
valid.

Specific Error Codes

BG_UNABLE_TO_OPEN The specified port is not connected to a
Beagle analyzer or the port is already in
use.

BG_INCOMPATIBLE_DEVICE There is a version mismatch between the
DLL and the hardware. The DLL is not of a
sufficient version for interoperability with the
hardware version or vice versa. See
bg_open_ext() in Section 6.4.1.4 for
more information.

Details

This function is recommended for use in simple applications where extended
information is not required. For more complex applications, the use of
bg_open_ext() is recommended.

Beagle Protocol Analyzer User Manual

94

Open a Beagle analyzer (bg_open_ext)

 Beagle bg_open_ext (int port_number, BeagleExt *bg_ext);

Open the Beagle port, returning extended information in the supplied structure.

Arguments

port_number same as bg_open

bg_ext pointer to pre-allocated structure for extended version
information available on open

Return Value

This function returns a Beagle handle, which is guaranteed to be greater than zero if
valid.

Specific Error Codes

BG_UNABLE_TO_OPEN The specified port is not connected to a
Beagle analyzer or the port is already in
use.

BG_INCOMPATIBLE_DEVICE There is a version mismatch between the
DLL and the hardware. The DLL is not of a
sufficient version for interoperability with the
hardware version or vice versa. The version
information will be available in the memory
pointed to by bg_ext.

Details

If 0 is passed as the pointer to the structure bg_ext, this function will behave
exactly like bg_open().

The BeagleExt structure is described below:

 struct BeagleExt {
 BeagleVersion version;
 /* Feature bitmap for this device. */
 int features;
 };

The features field denotes the capabilities of the Beagle analyzer. See the API
function bg_features for more information.

Beagle Protocol Analyzer User Manual

95

The BeagleVersion structure describes the various version dependencies of
Beagle components. It can be used to determine which component caused an
incompatibility error.

struct BeagleVersion {
 /* Software, firmware, and hardware versions. */
 u16 software;
 u16 firmware;
 u16 hardware;

 /*
 * Hardware revisions that are compatible with this software version.
 * The top 16 bits gives the maximum accepted hw revision.
 * The lower 16 bits gives the minimum accepted hw revision.
 */
 u32 hw_revs_for_sw;

 /*
 * Firmware revisions that are compatible with this software version.
 * The top 16 bits gives the maximum accepted fw revision.
 * The lower 16 bits gives the minimum accepted fw revision.
 */
 u32 fw_revs_for_sw

 /*
 * Driver revisions that are compatible with this software version.
 * The top 16 bits gives the maximum accepted driver revision.
 * The lower 16 bits gives the minimum accepted driver revision.
 * This version checking is currently only pertinent for WIN32
 * platforms.
 */
 u32 drv_revs_for_sw;

 /
* Software requires that the API must be >= this version. */
 u16 api_req_by_sw;
};

All version numbers are of the format:

(major << 8) | minor
example: v1.20 would be encoded as 0x0114.

The structure is zeroed before the open is attempted. It is filled with whatever
information is available. For example, if the hardware version is not filled, then the
device could not be queried for its version number.

Beagle Protocol Analyzer User Manual

96

This function is recommended for use in complex applications where extended
information is required. For simpler applications, the use of bg_open() is
recommended.

Close a Beagle analyzer connection (bg_close)

 int bg_close (Beagle beagle);

Close the Beagle analyzer port.

Arguments

beagle handle of a Beagle analyzer to be closed

Return Value

The number of analyzers closed is returned on success. This will usually be 1.

Specific Error Codes

None.

Details

If the handle argument is zero, the function will attempt to close all possible
handles, thereby closing all open Beagle analyzer. The total number of Beagle
analyzers closed is returned by the function.

Get Features (bg_features)

 int bg_features (Beagle beagle);

Return the device features as a bit-mask of values, or an error code if the handle is not
valid.

Arguments

beagle handle of a Beagle analyzer

Return Value

The features of the Beagle analyzer are returned. These are a bit-mask of the
following values.

 #define BG_FEATURE_NONE (0)

Beagle Protocol Analyzer User Manual

97

 #define BG_FEATURE_I2C (1<<0)
 #define BG_FEATURE_SPI (1<<1)
 #define BG_FEATURE_USB (1<<2)
 #define BG_FEATURE_MDIO (1<<3)
 #define BG_FEATURE_USB_HS (1<<4)
 #define BG_FEATURE_USB_SS (1<<5)

Specific Error Codes

None.

Details

None.

Get Features by Unique ID (bg_unique_id_to_features)

 int bg_unique_id_to_features (u32 unique_id);

Return the bitmask of device features for the given Beagle device, identified by
unique_id.

Arguments

beagle unique ID of a Beagle analyzer

Return Value

The features of the Beagle analyzer are returned. See bg_features() for details
on the bit map.

Specific Error Codes

None.

Details

None.

Get Port (bg_port)

 int bg_port (Beagle beagle);

Return the port number for this Beagle handle.

Arguments

beagle handle of a Beagle analyzer

Beagle Protocol Analyzer User Manual

98

Return Value

The port number corresponding to the given handle is returned. It is a zero-based
number.

Specific Error Codes

None.

Details

None.

Get Unique ID (bg_unique_id)

 u32 bg_unique_id (Beagle beagle);

Return the unique ID of the given Beagle analyzer.

Arguments

beagle handle of a Beagle analyzer

Return Value

This function returns the unique ID for this Beagle analyzer. The IDs are guaranteed
to be non-zero if valid. The ID is the unsigned integer representation of the 10-digit
serial number.

Specific Error Codes

None.

Details

None.

Status String (bg_status_string)

 const char *bg_status_string (int status);

Return the status string for the given status code.

Arguments

status status code returned by a Beagle API function

Return Value

Beagle Protocol Analyzer User Manual

99

This function returns a human readable string that corresponds to status. If the code
is not valid, it returns a NULL string.

Specific Error Codes

None.

Details

None.

Version (bg_version)

 int bg_version (Beagle beagle, BeagleVersion *version);

Return the version matrix for the device attached to the given handle.

Arguments

beagle handle of a Beagle analyzer

version pointer to pre-allocated structure

Return Value

A Beagle status code is returned with BG_OK on success.

Specific Error Codes

BG_COMMUNICATION_ERROR The firmware of the specified
device can not be determined.

Details

If the handle is 0 or invalid, only the software version is set.

See the details of bg_open_ext() for the definition of BeagleVersion.

Capture Latency (bg_latency)

 int bg_latency (Beagle beagle, u32 milliseconds);

Set the capture latency to the specified number of milliseconds.

Arguments

beagle handle of a Beagle analyzer

Beagle Protocol Analyzer User Manual

100

milliseconds new capture latency in milliseconds

Return Value

A Beagle status code is returned with BG_OK on success.

Specific Error Codes

BG_STILL_ACTIVE An attempt was made to change the
configuration while the capture was still active.

Details

Set the capture latency to the specified number of milliseconds.

The capture latency effectively splits up the total amount of buffering (as determined
by bg_host_buffer_size()) into smaller individual buffers. Only once one of
these individual buffers is filled, does the read function return. Therefore, in order to
fulfill shorter latency requirements these individual buffers are set to a smaller size.
If a larger latency is requested, then the individual buffers will be set to a larger size.

Setting a small latency can increase the responsiveness of the read functions. It is
important to keep in mind that there is a fixed cost to processing each individual
buffer that is independent of buffer size. Therefore, the trade-off is that using a small
latency will increase the overhead per byte buffered. A large latency setting
decreases that overhead, but increases the amount of time that the library must wait
for each buffer to fill before the library can process their contents.

This setting is distinctly different than the timeout setting. The latency time should be
set to a value shorter than the timeout time.

Timeout Value (bg_timeout)

 int bg_timeout (Beagle beagle, u32 milliseconds);

Set the read timeout to the specified number of milliseconds.

Arguments

beagle handle of a Beagle analyzer

milliseconds new timeout value in milliseconds

Return Value

A Beagle status code is returned with BG_OK on success.

Specific Error Codes

Beagle Protocol Analyzer User Manual

101

None.

Details

Set the idle timeout to the specified number of milliseconds.

This function sets the amount of time that the read functions will wait before
returning if the bus is idle. If a read function is called and there has been no new
data on the bus for the specified timeout interval, the function will return with the
BG_READ_TIMEOUT flag of the status value set and the return value will indicate
the number of bytes of data that the Beagle analyzer was able to capture prior to the
timeout.

If the timeout is set to 0, there is no timeout interval and the read functions will block
until the requested amount of data is captured or a complete packet with the
appropriate bus end condition is observed.

This setting is distinctly different than the latency setting. The timeout time should be
set to a value longer than the latency time.

Sleep (bg_sleep_ms)

 u32 bg_sleep_ms (u32 milliseconds);

Sleep for given amount of time.

Arguments

milliseconds number of milliseconds to sleep

Return Value

This function returns the number of milliseconds slept.

Specific Error Codes

None.

Details

This function provides a convenient cross-platform function to sleep the current
thread using standard operating system functions.

The accuracy of this function depends on the operating system scheduler. This
function will return the number of milliseconds that were actually slept.

Beagle Protocol Analyzer User Manual

102

Target Power (bg_target_power)

 int bg_target_power (Beagle beagle, u08 power_flag);

Activate/deactivate target power pins 4 and 6.

Arguments

beagle handle of a Beagle analyzer

power_mask enumerated values specifying power pin state. See Table 7.

Table 7 : Power Flag definitions

BG_TARGET_POWER_OFF Disable target power pin

BG_TARGET_POWER_ON Enable target power pin

BG_TARGET_POWER_QUERY Queries the target power pin state

Return Value

The current state of the target power pins on the Beagle analyzer will be returned.
The configuration will be described by the same values as in the table above.

Specific Error Codes

BG_FUNCTION_NOT_AVAILABLE The hardware version is not
compatible with this feature. Only
the Beagle I C/SPI/MDIO monitor
supports switchable target power
pins.

Details

This function is only available on the Beagle I C/SPI/MDIO Protocol Analyzer.

Both target power pins are controlled together. Independent control is not
supported. This function may be executed in any operation mode.

For the most part, target power should be left off, as the Beagle analyzer is normally
passively monitoring the bus.

Host Interface Speed (bg_host_ifce_speed)

 int bg_host_ifce_speed (Beagle beagle);

Beagle Protocol Analyzer User Manual

2

2

103

Query the host interface speed.

Arguments

beagle handle of a Beagle analyzer

Return Value

This function returns enumerated values specifying the USB speed at which the
analysis computer is communicating with the given Beagle analyzer. See Table 8.

Table 8 : Interface Speed definitions

BG_HOST_IFCE_FULL_SPEED Full-speed (12 Mbps) interface

BG_HOST_IFCE_HIGH_SPEED High-speed (480 Mbps) interface

Specific Error Codes

None.

Details

Used to determine the USB communication rate between the Beagle analyzer and
the analysis PC. The Beagle analyzers require a high-speed USB connection with
the host. Capturing from a Beagle analyzer that is connected at full-speed can
cause data to be lost and corruption of capture data.

6.4.2 Buffering

Host Buffer Size (bg_host_buffer_size)

 int bg_host_buffer_size(Beagle beagle, u32 size_bytes);

Set the amount of buffering that is to be allocated on the analysis PC

Arguments

beagle handle of a Beagle analyzer

num_bytes number of bytes in buffer

Return Value

This function returns the actual amount of buffering set.

Specific Error Codes

Beagle Protocol Analyzer User Manual

104

BG_STILL_ACTIVE An attempt was made to change the
configuration while the capture was still active.

Details

This function sets the amount of memory allocated to buffering data that has been
siphoned off the Beagle analyzer by the host software library, but not yet read by the
application. The absolute minimum and maximum values for this buffer size are
64 kB and 16 MB, respectively. The requested buffer size is matched as closely as
possible by the function, and the function will keep the actual buffer size within these
boundaries. For example, if 32 kB of buffering is requested, then 64 kB will actually
be set.

If num_bytes is 0, the function will return the amount of buffering currently set on
the PC and will leave the amount of buffering unmodified. This function can be
called in this fashion even when the capture is active as it does not attempt to
change the configuration. It is important to note that bg_latency() and
bg_sample_rate() can have an effect on the total buffer size. Therefore, to
accurately determine how much buffering has been set on the PC, this call should
be made after all the configurations have been set.

If the application does not read data from the software library quickly enough, the
entire host-side buffer will fill. For most of the Beagle analyzers this means that any
new traffic on the target bus will be dropped. The Beagle USB 480 analyzer,
however, has a large on-board memory buffer to solve this issue. To understand the
operation of the Beagle USB 480 analyzer and how it relates to the API, please refer
to Section 6.8.

Available Read Buffering (bg_host_buffer_free)

 int bg_host_buffer_free (Beagle beagle);

Query the amount of read buffering available.

Arguments

beagle handle of a Beagle analyzer

Return Value

The amount of available USB read buffering in bytes.

Specific Error Codes

None.

Details

Beagle Protocol Analyzer User Manual

105

USB read buffers are used by the analysis computer to receive the incoming data
from the Beagle analyzer. Calling this function will return the amount of PC buffering
available to receive data as of the last bg_*_read() call. If the amount of available
USB buffering drops close to zero, capture data from the device may be lost.

Used Read Buffering (bg_host_buffer_used)

 int bg_host_buffer_used (Beagle beagle);

Query the amount of used USB read buffering.

Arguments

beagle handle of a Beagle analyzer.

Return Value

The amount of used USB read buffering in bytes.

Specific Error Codes

None.

Details

USB read buffers are used by the analysis computer to receive the incoming data
from the Beagle analyzer. Calling this function will return the amount of PC buffering
filled with received data as of the last bg_*_read() call. If the amount of used USB
buffering comes close to the total buffer size, capture data from the device may be
lost.

Communication Speed Benchmark (bg_commtest)

 int bg_commtest (Beagle beagle, int num_samples, int delay_count);

Test the Beagle analyzer communication link performance.

Arguments

beagle handle of a Beagle analyzer

num_samples number of samples to receive from the analyzer.

delay_count count delay on the host before processing each sample

Return Value

The number of communication errors received during the test.

Beagle Protocol Analyzer User Manual

106

Specific Error Codes

None.

Details

This function tests the host computers ability to process data received from the
Beagle analyzer. The function commands the given Beagle analyzer to send test
packets at the given frequency (see bg_samplerate()) to the host computer
over the USB interface. The delay_count variable provides a way for the
application programmer to add an artificial counter delay between each sample
processed by the host. For large delay values, it will be harder for the host to keep
up with the data rate over the USB bus, thereby leading to more communication
errors.

6.4.3 Monitoring API

Enable Monitoring (bg_enable)

 int bg_enable (Beagle beagle, BeagleProtocol protocol);

Start monitoring packets on the selected interface.

Arguments

beagle handle of a Beagle analyzer

protocol enumerated values specifying the protocol to monitor
(see Table 9)

Table 9 : BeagleProtocol enumerated values

BG_PROTOCOL_NONE No Protocol

BG_PROTOCOL_COMMTEST Comm Tester

BG_PROTOCOL_USB USB Protocol

BG_PROTOCOL_I2C I C Protocol

BG_PROTOCOL_SPI SPI Protocol

BG_PROTOCOL_MDIO MDIO Protocol

Return Value

A Beagle status code of BG_OK is returned on success.

Beagle Protocol Analyzer User Manual

2

107

Specific Error Codes

BG_FUNCTION_NOT_AVAILABLE The connected Beagle analyzer
does not support capturing for the
requested protocol.

BG_UNKNOWN_PROTOCOL A protocol was requested that
does not appear in the
enumeration detailed in Table 9.

Details

This function enables monitoring on the given Beagle analyzer. See the section on
the protocol-specific APIs. Functions for retrieving the capture data from the Beagle
analyzer are described therein.

Stop Monitoring (bg_disable)

 int bg_disable (Beagle beagle);

Stop monitoring of packets.

Arguments

beagle handle of a Beagle analyzer

Return Value

A Beagle status code of BG_OK is returned on success.

Specific Error Codes

None.

Details

Stops monitoring on the given Beagle analyzer.

Sample Rate (bg_samplerate)

 int bg_samplerate (Beagle beagle, int samplerate_khz);

Set the sample rate in kilohertz.

Arguments

beagle handle of a Beagle analyzer

samplerate_khz New sample rate in kilohertz

Beagle Protocol Analyzer User Manual

108

Return Value

This function returns the actual sample rate set.

Specific Error Codes

BG_FUNCTION_NOT_AVAILABLE The Beagle analyzer does not
support changing the sample rate.

BG_STILL_ACTIVE An attempt was made to change
the configuration while the
capture was still active.

Details

Changes the sample rate for a Beagle analyzer. The device must not currently have
monitoring enabled.

If samplerate_khz is 0, the function will return the sample rate currently set on
the Beagle analyzer and the sample rate will be left unmodified. The Beagle USB 12
analyzer and the Beagle USB 480 analyzer do not support changing the sample
rate, so it will always return the current sample rate.

Bit Timing Size (bg_bit_timing_size)

 int bg_bit_timing_size (BeagleProtocol protocol,
 int num_data_bytes);

Get the size of the timing data for the given protocol and data size.

Arguments

protocol enumerated values specifying the protocol of
the data (see Table 9)

num_data_bytes number of data bytes expected

Return Value

The number of timing entries to expect for given number of data bytes for the given
protocol.

Specific Error Codes

None.

Details

Beagle Protocol Analyzer User Manual

109

Call this function before calling the bg_***_read_bit_timing() API functions to
determine how large a bit_timing array to allocate.

For BG_PROTOCOL_MDIO, this function will always return the value 32, regardless of
the the value passed for num_data_bytes.

Trigger Capture (bg_capture_trigger)

 int bg_capture_trigger (Beagle beagle);

Trigger the capture.

Arguments

beagle handle of a Beagle analyzer

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

BG_FUNCTION_NOT_AVAILABLE Function not supported by device.

Details

This function is supported only for analyzers with on-board triggering capability.

Calling this function triggers the capture. Once the capture has been triggered, data
can be downloaded from the hardware buffer by calling the read function.

Wait for Capture to Trigger (bg_capture_trigger_wait)

 int bg_capture_trigger_wait (Beagle beagle
 u32 timeout_ms
 BeagleCaptureStatus * status);

Wait for capture to trigger.

Arguments

beagle handle of a Beagle analyzer

timeout_ms timeout value

status filled with enumerated value described in Table 10

Beagle Protocol Analyzer User Manual

110

Table 10 : BeagleCaptureStatus Enums

BG_CAPTURE_STATUS_INACTIVE Capture is not active

BG_CAPTURE_STATUS_SYNC_STANDBY Waiting for capture to start on all
analyzers connected by Cross-
Analyzer Sync

BG_CAPTURE_STATUS_PRE_TRIGGER Filling pre-trigger

BG_CAPTURE_STATUS_PRE_TRIGGER_SYNC Synchronizing timestampes
between multiple streams

BG_CAPTURE_STATUS_POST_TRIGGER Filling post-trigger

BG_CAPTURE_STATUS_TRANSFER Capture stopped, downloading data

BG_CAPTURE_STATUS_COMPLETE Capture stopped, all data
downloaded

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

BG_FUNCTION_NOT_AVAILABLE Function not supported by device.

Details

This function is supported only for analyzers with on-board triggering capability.

This function will block while the capture is in the pre-trigger or sync-standby states
or until timeout_ms milliseconds have passed.

Abort Capture (bg_capture_stop)

 int bg_capture_stop (Beagle beagle);

Stop capturing data.

Arguments

beagle handle of a Beagle analyzer

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

Beagle Protocol Analyzer User Manual

111

BG_FUNCTION_NOT_AVAILABLE Function not supported by device.

Details

This function is supported only for analyzers with on-board triggering capability. For
other analyzers, use bg_disable to stop the capture and download to PC.

Captured data may still be read from the hardware buffer after calling this function,
but new data will not be monitored. This is different that bg_disable, which
discards the capture buffer.

After calling this function, bg_disable must be called before a new capture can be
enabled.

6.5 Notes on Protocol-Specific Read Functions

All read functions return a status value through the status parameter. Table 11
provides a listing of all the status codes that are shared throughout all the protocols.

Table 11 : Read Status definitions

BG_READ_OK Read successful.

BG_READ_TIMEOUT No data was seen before the timeout interval
occurred. This may indicate that no data was
seen on the bus or there was a pause in the
transmission of data longer than the timeout
interval.

BG_READ_ERR_MIDDLE_OF_PACKET Data collection was started in the middle of a
packet. This indicates that a transaction was
already being transmitted across the bus when
the read function was called.

BG_READ_ERR_SHORT_BUFFER The packet was longer than the buffer size. The
buffer passed to the read function was too short
to contain the full data of the transaction.

BG_READ_ERR_PARTIAL_LAST_BYTE The last byte in the buffer is incomplete. The
number of bits of data captured did not align to
the expected data size. For example, for I C the
number of bits received was not a multiple of 9
(8 data bits plus 1 ACK/NACK bit).

BG_READ_ERR_UNEXPECTED An unexpected event occurred on the bus. The
event is still presented to the user, however it is
tagged with this status flag.

Beagle Protocol Analyzer User Manual

2

112

6.6 I C API

6.6.1 Notes

The I C API functions are only available for the Beagle I C/SPI/MDIO Protocol Analyzer.

6.6.2 I C Monitor Interface

I C Pullups (bg_i2c_pullup)

 int bg_i2c_pullup (Beagle beagle,
 u08 pullup_flag);

Enables, disables and queries the I C pullup resistors.

Arguments

beagle handle of a Beagle analyzer

pullup_flag the function to perform as detailed in Table 12

Table 12 : Pullup definitions

BG_I2C_PULLUP_OFF Disable the pullup resistors.

BG_I2C_PULLUP_ON Enable the pullup resistors.

BG_I2C_PULLUP_QUERY Query the status of the pullup resistors.

Return Value

A Beagle status code of BG_OK is returned on success. If the value passed for
pullup_flag is BG_I2C_PULLUP_QUERY, the state of the pullups is returned.

Specific Error Codes

BG_FUNCTION_NOT_AVAILABLE The hardware version is not
compatible with this feature.
Only I C devices support
switchable pullup pins.

Details

Sets and queries the state of the pullup resistors on the I C lines. Normally the
pullups will be set by the host and target devices, so this function will not be used.

Beagle Protocol Analyzer User Manual

2

2 2

2

2

2

2

2

113

Read I C (bg_i2c_read)

 int bg_i2c_read (Beagle beagle,
 u32 * status,
 u64 * time_sop,
 u64 * time_duration,
 u32 * time_dataoffset,
 int max_bytes,
 u16 * data_in);

Read packet from the I C port.

Arguments

beagle handle of a Beagle analyzer

status filled with the status bitmask as detailed in
Tables 11 and 13

time_sop filled with the timestamp when the packet
begins

time_duration filled with the number of ticks that it took to
read the data

time_dataoffset filled with the timestamp when data
appeared on the bus

max_bytes maximum number of bytes to read

data_in an allocated array of u16 which is filled with
the received data

Table 13 : I C Specific Read Status definitions

BG_READ_I2C_NO_STOP The I C stop condition was not observed on the bus. This
can be caused either by a read timeout or by a I C repeated
start condition.

Return Value

This function returns the number of bytes read or a negative value indicating an
error.

Specific Error Codes

None.

Details

Beagle Protocol Analyzer User Manual

2

2

2

2

2

114

The function will block until the requested amount of data is captured, a complete
packet with a stop or repeated start condition is observed, or the bus is idle for
longer than the timeout interval set. See Section 6.4.1.12 for information on the
bg_latency() and bg_timeout() functions which affect the behavior of this
function.

For each u16 written to data_in by the function, the lower 8-bits represent the
value of a byte of data sent across the bus and bit 8 represents the ACK or NACK
value for that byte. A 0 in bit 8 represents an ACK and a 1 in bit 8 represents a
NACK. See Table 14 for constants that may be used as bit mask to access the
appropriate fields in data_in.

All of the timing data is measured in ticks of the sample rate clock.

Table 14 : I C Data Mask constants

Constant name Value Description

BG_I2C_MONITOR_DATA 0x00ff Mask to access data field.

BG_I2C_MONITOR_NACK 0x0100 Mask to access ACK/NACK field.

The data_in pointer should be allocated at least as large as max_bytes.

All of the timing data is measured in ticks of the sample clock.

Read I C with data-level timing (bg_i2c_read_data_timing)

 int bg_i2c_read_data_timing (Beagle beagle,
 u32 * status,
 u64 * time_sop,
 u64 * time_duration,
 u32 * time_dataoffset,
 int max_bytes,
 u16 * data_in,
 int max_timing,
 u32 * data_timing);

Read data from the I C port.

Arguments

common_args see bg_i2c_read() for common arguments

max_timing size of data_timing array

Beagle Protocol Analyzer User Manual

2

2

2

115

data_timing an allocated array of u32 which is filled with timing
data for each data word read

Return Value

This function returns the number of bytes read or a negative value indicating an
error.

Specific Error Codes

None.

Details

This function is an extension of the bg_i2c_read() function with the added
feature of giving data-level timing. All of the bg_i2c_read() arguments and
details apply.

The values in the data_timing array give the offset of the start of each data word
from time_sop. A data word includes all 8 bits of data as well as the
acknowledgment bit.

The data_timing array should be allocated at least as large as max_timing.

Read I C with bit-level timing (bg_i2c_read_bit_timing)

 int bg_i2c_read_bit_timing (Beagle beagle,
 u32 * status,
 u64 * time_sop,
 u64 * time_duration,
 u32 * time_dataoffset,
 int max_bytes,
 u16 * data_in,
 int max_timing,
 u32 * bit_timing);

Read data from the I C port.

Arguments

common_args see bg_i2c_read() for common arguments

max_timing size of bit_timing array

bit_timing an allocated array of u32 which is filled with the timing
data for each bit read

Return Value

Beagle Protocol Analyzer User Manual

2

2

116

This function returns the number of bytes read or a negative value indicating an
error.

Specific Error Codes

None.

Details

This function is an extension of the bg_i2c_read() function with the added
feature of giving bit-level timing. All of the bg_i2c_read() arguments and details
apply.

The values in the bit_timing array give the offset of each bit from time_sop.

The bit_timing array should be allocated at least as large as max_timing. Use
the function bg_bit_timing_size() (in Section 6.4.3.4) to determine how large
an array to allocate for bit_timing.

6.7 SPI API

6.7.1 Notes

The SPI API functions are only available for the Beagle I C/SPI/MDIO Protocol Analyzer.

6.7.2 SPI Monitor Interface

SPI Configuration (bg_spi_configure)

 int bg_spi_configure (Beagle beagle,
 BeagleSpiSSPolarity ss_polarity,
 BeagleSpiSckSamplingEdge sck_sampling_edge,
 BeagleSpiBitorder bitorder);

Sets SPI bus parameters.

Arguments

beagle handle of a Beagle analyzer

ss_polarity sets the slave select detection to active-low
or active-high bit polarity, see Table 15

Beagle Protocol Analyzer User Manual

2

117

sck_sampling_edge sets data sampling on the leading or trailing
edge of the clock signal, see Table 16

bitorder sets big-endian or little-endian bit order,
see Table 17

Table 15 : SPI SS Polarity definitions

BG_SPI_SS_ACTIVE_LOW Set active low polarity

BG_SPI_SS_ACTIVE_HIGH Set active high polarity

Table 16 : SPI SCK Sampling Edge definitions

BG_SPI_SCK_SAMPLING_EDGE_RISING Sample on the leading edge

BG_SPI_SCK_SAMPLING_EDGE_FALLING Sample on the trailing edge

Table 17 : SPI Bit Order definitions

BG_SPI_BITORDER_MSB Big-endian bit ordering

BG_SPI_BITORDER_LSB Little-endian bit ordering

Return Value

A Beagle status code of BG_OK is returned on success or an error code as detailed
in Table 74.

Specific Error Codes

BG_STILL_ACTIVE An attempt was made to change the
configuration while the capture was
still active.

BG_FUNCTION_NOT_AVAILABLE The hardware version is not
compatible with this feature. Only
the I C/SPI/MDIO device supports
SPI configuration.

Details

The SPI standard is much more loosely defined than I C, MDIO, or USB. As a
consequence, the SPI monitor must be configured to match the parameters of the
device being monitored. If the configuration of the SPI monitor does not match the

Beagle Protocol Analyzer User Manual

2

2

118

configuration of the SPI devices being monitored, the capture data from the monitor
may be corrupted.

Read SPI (bg_spi_read)

 int bg_spi_read (Beagle beagle,
 u32 * status,
 u64 * time_sop,
 u64 * time_duration,
 u32 * time_dataoffset,
 int mosi_max_bytes,
 u08 * data_mosi,
 int miso_max_bytes,
 u08 * data_miso);

Read data from the SPI port.

Arguments

beagle handle of a Beagle analyzer

status filled with the status bitmask as detailed in
Table 11

time_sop filled with the timestamp when the data read
begins

time_duration filled with the number of ticks that it took to
read the data

time_dataoffset filled with the timestamp when data appeared
on the bus

mosi_max_bytes maximum number of MOSI bytes to fill

data_mosi an allocated array of u08 which is filled with
the data sent from the master to the slave

miso_max_bytes maximum number of MISO bytes to fill

data_miso an allocated array of u08 which is filled with
the data sent from the slave to the master

Return Value

This function returns the number of bytes read or a negative value indicating an
error.

Specific Error Codes

None.

Details

Beagle Protocol Analyzer User Manual

119

The function will block until the requested amount of data is captured, a complete
packet with slave select deassertion is observed, or the bus is idle for longer than
the timeout interval set. See Section 6.4.1.12 for information on the bg_latency()
and bg_timeout() functions which affect the behavior of this function.

The data_mosi array should be allocated at least as large as mosi_max_bytes.
The data_miso array should be allocated at least as large as miso_max_bytes.

All of the timing data is measured in ticks of the sample clock.

Read SPI with data-level timing (bg_spi_read_data_timing)

 int bg_spi_read_data_timing (Beagle beagle,
 u32 * status,
 u64 * time_sop,
 u64 * time_duration,
 u32 * time_dataoffset,
 int mosi_max_bytes,
 u08 * data_mosi,
 int miso_max_bytes,
 u08 * data_miso,
 int max_timing,
 u32 * data_timing);

Read data from the SPI port.

Arguments

common_args see bg_spi_read() for common arguments

max_timing size of data_timing array

data_timing an allocated array of u32 which is filled with timing
data for each data word read

Return Value

This function returns the number of bytes read or a negative value indicating an
error.

Specific Error Codes

None.

Details

Beagle Protocol Analyzer User Manual

120

This function is an extension of the bg_spi_read() function with the added
feature of byte-level timing. All of the bg_spi_read() arguments and details
apply.

The values in the data_timing array give the offset of the start of each data word
from time_sop. For SPI, a data word is considered a single byte.

The data_timing array should be allocated at least as large as max_timing.

Read SPI with bit-level timing (bg_spi_read_bit_timing)

 int bg_spi_read_bit_timing (Beagle beagle,
 u32 * status,
 u64 * time_sop,
 u64 * time_duration,
 u32 * time_dataoffset,
 int mosi_max_bytes,
 u08 * data_mosi,
 int miso_max_bytes,
 u08 * data_miso,
 int max_timing,
 u32 * bit_timing);

Read data from the SPI port.

Arguments

common_args see bg_spi_read() for common arguments

max_timing size of bit_timing array

bit_timing an allocated array of u32 which is filled with the timing
data for each bit read

Return Value

This function returns the number of bytes read or a negative value indicating an
error.

Specific Error Codes

None.

Details

This function is an extension of the bg_spi_read() function with the added
feature of bit-level timing. All of the bg_spi_read() arguments and details apply.

Beagle Protocol Analyzer User Manual

121

The values in the bit_timing array give the offset of each bit from time_sop.

The bit_timing array should be allocated at least as large as max_timing. Use
the function bg_bit_timing_size() (in Section 6.4.3.4) to determine how large
an array to allocate for bit_timing.

6.8 USB API

6.8.1 Notes

1. All USB functions can be used with any Beagle USB analyzer, but an error code
will be returned if the analyzer's hardware does not support the required
functionality.

2. The following functionality is not supported for the Beagle USB 12 and the Beagle
USB 480 Protocol Analyzers:

1. Hardware-based USB statistics system

2. Licensing

3. Memory tests

3. The following functionality is not supported for the Beagle USB 12 and the non-
Power model of Beagle USB 480 Protocol Analyzers:

1. On-board triggering capability

2. Controlling V provided to target device

4. The following functionality is not supported for the Beagle USB 12 Protocol
Analyzers:

1. Configuring USB 2.0 target speed

2. Digital I/O

3. Hardware Filters

5. Delayed-download capture mode is supported only for the Beagle USB 480
Protocol Analyzer.

6. Reading data with data-level timing and bit-level timing is supported only for the
Beagle USB 12 Protocol Analyzers.

Beagle Protocol Analyzer User Manual

BUS

122

7. The USB 3.0 API functions are supported only for the Beagle USB 5000
SuperSpeed Protocol Analyzers.

8. The USB 5000 API functions are supported only for the Beagle USB 5000
SuperSpeed Protocol Analyzers.

9. The first byte of a captured USB 2.0 packet is the packet ID (PID). An
enumeration is provided that defines all the possible PIDs which is listed in Table
18.

Table 18 : USB 2.0 Packet ID definitions

BG_USB_PID_OUT 0xe1

BG_USB_PID_IN 0x69

BG_USB_PID_SOF 0xa5

BG_USB_PID_SETUP 0x2d

BG_USB_PID_DATA0 0xc3

BG_USB_PID_DATA1 0x4b

BG_USB_PID_DATA2 0x87

BG_USB_PID_MDATA 0x0f

BG_USB_PID_ACK 0xd2

BG_USB_PID_NAK 0x5a

BG_USB_PID_STALL 0x1e

BG_USB_PID_NYET 0x96

BG_USB_PID_PRE 0x3c

BG_USB_PID_ERR 0x3c

BG_USB_PID_SPLIT 0x78

BG_USB_PID_PING 0xb4

BG_USB_PID_EXT 0xf0

10. In addition to the general read status values in Table 11, the USB read functions
can also return USB specific status values. The enumerated types are listed in
Table 19.

Table 19 : USB Read Status definitions

Status Codes for USB 12, USB 480, and USB 5000

BG_READ_USB_ERR_BAD_SIGNALS Incorrect line states

BG_READ_USB_ERR_BAD_PID Captured packet has bad PID

Beagle Protocol Analyzer User Manual

123

BG_READ_USB_ERR_BAD_CRC Captured packet has bad CRC

USB 12 Specific Status Codes

BG_READ_USB_ERR_BAD_SYNC Cannot find SYNC signal

BG_READ_USB_ERR_BIT_STUFF Bit stuffing error detected

BG_READ_USB_ERR_FALSE_EOP Incorrect End of packet

BG_READ_USB_ERR_LONG_EOP End of packet too long

Status Codes for USB 480 and USB 5000

BG_READ_USB_TRUNCATION_LEN_MASK Available truncated data mask

BG_READ_USB_TRUNCATION_MODE Captured packet in truncation mode

BG_READ_USB_END_OF_CAPTURE Capture has ended

USB 5000 Specific Status Codes

BG_READ_USB_ERR_BAD_SLC_CRC_1 CRC error in 1st SLC

BG_READ_USB_ERR_BAD_SLC_CRC_2 CRC error in 2nd SLC

BG_READ_USB_ERR_BAD_SHP_CRC_16 CRC-16 error in SHP

BG_READ_USB_ERR_BAD_SHP_CRC_5 CRC-5 error in SHP

BG_READ_USB_ERR_BAD_SDP_CRC CRC error in SDP

BG_READ_USB_EDB_FRAMING EDB end frame in SDP

BG_READ_ERR_UNK_END_OF_FRAME Unknown end of frame

BG_READ_ERR_DATA_LEN_INVALID Data length invalid

BG_READ_USB_PKT_TYPE_LINK Link packet

BG_READ_USB_PKT_TYPE_HDR Header packet

BG_READ_USB_PKT_TYPE_DP Data packet

BG_READ_USB_PKT_TYPE_TSEQ TSEQ packet

BG_READ_USB_PKT_TYPE_TS1 TS1 packet

BG_READ_USB_PKT_TYPE_TS2 TS2 packet

BG_READ_USB_ERR_BAD_TS Error in training ordered set

BG_READ_USB_ERR_FRAMING 1 symbol corruption in framing

11. Additional event information is returned by the USB read functions through the
events argument. The event information is bitmask encoded with the
enumerated types defined in Tables 20, 21, 22, 24, 25, 23. Refer to Section 1.1.2
for details on how these events pertain to the USB architecture.

Table 20 : USB 12, 480 and 5000 Event Code definitions

Event Codes for USB 12, USB 480, and USB 5000

Beagle Protocol Analyzer User Manual

124

BG_EVENT_USB_HOST_DISCONNECT Target Host disconnected

BG_EVENT_USB_TARGET_DISCONNECT Target Device disconnected

BG_EVENT_USB_HOST_CONNECT Target Host connected

BG_EVENT_USB_TARGET_CONNECT Target Device connected

BG_EVENT_USB_RESET Bus put into reset state

Table 21 : USB 480 and 5000 USB 2.0 Event Code definitions

Event Codes for USB 480 and USB 5000

BG_EVENT_USB_J_CHIRP Chirp-J detected

BG_EVENT_USB_K_CHIRP Chirp-K detected

BG_EVENT_USB_SPEED_UNKNOWN Communication speed is
unknown

BG_EVENT_USB_LOW_SPEED Low-speed bus operation
detected

BG_EVENT_USB_FULL_SPEED Full-speed bus operation
detected

BG_EVENT_USB_HIGH_SPEED High-speed bus
operation detected

BG_EVENT_USB_LOW_OVER_FULL_SPEED Low-over-full-speed bus
operation detected

BG_EVENT_USB_SUSPEND Bus has entered
suspend state

BG_EVENT_USB_RESUME Bus has left suspend
state

BG_EVENT_USB_KEEP_ALIVE Low-speed keep-alive
detected

BG_EVENT_USB_OTG_HNP OTG HNP detected

BG_EVENT_USB_OTG_SRP_DATA_PULSE OTG SRP data-line
pulse detected

BG_EVENT_USB_OTG_SRP_VBUS_PULSE OTG SRP V pulse
detected

BG_EVENT_USB_DIGITAL_INPUT One or more digital
inputs have changed
state

BG_EVENT_USB_DIGITAL_INPUT_MASK Bitmask of line state for
each input pin

Table 22 : USB 5000 USB 2.0 Event Code definitions

Beagle Protocol Analyzer User Manual

BUS

125

Event Codes for USB 5000

BG_EVENT_USB_SMA_EXTIN_DETECTED External Input change detected

BG_EVENT_USB_CHIRP_DETECTED Chrip detected

12. Manual triggers are represented by a lone BG_EVENT_USB_TRIGGER event (no
data or other events).

13. Simple triggers are represented by a BG_EVENT_USB_TRIGGER event, along with
the triggering packet or event.

14. Complex triggers are represented by a BG_EVENT_COMPLEX_TRIGGER event
along with state information indicating the complex state in which the trigger
occurred. Complex triggers, like simple triggers, come with the triggering packet
or event.

Table 23 : USB 5000 USB 2.0 and 3.0 Trigger Event Code definitions

Trigger Event Codes for USB 5000

BG_EVENT_USB_VBUS_TRIGGER V trigger event
detected

BG_EVENT_USB_COMPLEX_TIMER Complex timer
lapsed

BG_EVENT_USB_COMPLEX_TRIGGER Complex trigger
event

BG_EVENT_USB_TRIGGER Simple trigger event

BG_EVENT_USB_TRIGGER_STATE_MASK Bitmask of trigger
state number

BG_EVENT_USB_TRIGGER_STATE_SHIFT Shift amount to
recover state
number

BG_EVENT_USB_TRIGGER_STATE_0 Trigger state 0

BG_EVENT_USB_TRIGGER_STATE_1 Trigger state 1

BG_EVENT_USB_TRIGGER_STATE_2 Trigger state 2

BG_EVENT_USB_TRIGGER_STATE_3 Trigger state 3

BG_EVENT_USB_TRIGGER_STATE_4 Trigger state 4

BG_EVENT_USB_TRIGGER_STATE_5 Trigger state 5

BG_EVENT_USB_TRIGGER_STATE_6 Trigger state 6

BG_EVENT_USB_TRIGGER_STATE_7 Trigger state 7

Table 24 : USB 5000 USB 3.0 General Event Code definitions

Beagle Protocol Analyzer User Manual

BUS

126

Event Codes for USB 5000

BG_EVENT_USB_LFPS LFPS event

BG_EVENT_USB_LTSSM LTSSM event

BG_EVENT_USB_VBUS_PRESENT Host V present

BG_EVENT_USB_VBUS_ABSENT Host V absent

BG_EVENT_USB_SCRAMBLING_ENABLED USB scrambling enabled

BG_EVENT_USB_SCRAMBLING_DISABLED USB scrambling disabled

BG_EVENT_USB_POLARITY_NORMAL Normal lane polarity

BG_EVENT_USB_POLARITY_REVERSED Lane polarity inverted

BG_EVENT_USB_PHY_ERROR PHY error

BG_EVENT_USB_SMA_EXTIN_ASSERTED External Input asserted

BG_EVENT_USB_SMA_EXTIN_DEASSERTED External Input de-asserted

BG_EVENT_USB_TRIGGER_5GBIT_START Start 5 Gbit data

BG_EVENT_USB_TRIGGER_5GBIT_STOP Stop 5 Gbit data

Table 25 : USB 5000 USB 3.0 LTSSM Event Code definitions

LTSSM Event Codes for USB 5000

BG_EVENT_USB_LTSSM_STATE_UNKNOWN Unknown LTSSM state

BG_EVENT_USB_LTSSM_STATE_SS_DISABLED LTSSM SS.Disabled
state

BG_EVENT_USB_LTSSM_STATE_SS_INACTIVE LTSSM SS.Inactive
state

BG_EVENT_USB_LTSSM_STATE_RX_DETECT_RESET LTSSM Rx.Detect
reset

BG_EVENT_USB_LTSSM_STATE_RX_DETECT_ACTIVE LTSSM Rx.Detect
active

BG_EVENT_USB_LTSSM_STATE_POLLING_LFPS LTSSM Polling.LFPS
substate

BG_EVENT_USB_LTSSM_STATE_POLLING_RXEQ LTSSM Polling.RxEQ
substate

BG_EVENT_USB_LTSSM_STATE_POLLING_ACTIVE LTSSM Polling.Active
substate

BG_EVENT_USB_LTSSM_STATE_POLLING_CONFIG LTSSM
Polling.Configuration
substate

Beagle Protocol Analyzer User Manual

BUS

BUS

127

BG_EVENT_USB_LTSSM_STATE_POLLING_IDLE LTSSM Polling.Idle
substate

BG_EVENT_USB_LTSSM_STATE_U0 LTSSM U0 state

BG_EVENT_USB_LTSSM_STATE_U1 LTSSM U1 state

BG_EVENT_USB_LTSSM_STATE_U2 LTSSM U2 state

BG_EVENT_USB_LTSSM_STATE_U3 LTSSM U3 state

BG_EVENT_USB_LTSSM_STATE_RECOVERY_ACTIVE LTSSM
Recovery.Active
substate

BG_EVENT_USB_LTSSM_STATE_RECOVERY_CONFIG LTSSM
Recovery.Configuration
substate

BG_EVENT_USB_LTSSM_STATE_RECOVERY_IDLE LTSSM Recovery.Idle
substate

BG_EVENT_USB_LTSSM_STATE_HOT_RESET_ACTIVE LTSSM Hot
Reset.Active substate

BG_EVENT_USB_LTSSM_STATE_HOT_RESET_EXIT LTSSM Hot Reset.Exit
substate

BG_EVENT_USB_LTSSM_STATE_LOOPBACK_ACTIVE LTSSM
Loopback.Active
substate

BG_EVENT_USB_LTSSM_STATE_LOOPBACK_EXIT LTSSM Loopback.Exit
substate

BG_EVENT_USB_LTSSM_STATE_COMPLIANCE LTSSM Compliance
Mode state

6.8.2 Using the Beagle USB API

In order to use the USB API with the Beagle USB Protocol Analyzers, a number of
subsystems need to be configured properly before capture data can be read. The
sequence of typical configuration commands are as follows:

1. Call bg_open to open a handle to a Beagle analyzer

2. Call bg_timeout to set the read timeout

3. Call bg_latency to set the capture latency

4. Call bg_usb2_capture_buffer_config or
bg_usb3_capture_buffer_config to configure the hardware capture buffers.

Beagle Protocol Analyzer User Manual

128

These functions set the total capture size and how much pre-trigger data will be
captured. These functions are supported only for analyzers with on-board
triggering capability. Error code of BG_FUNCTION_NOT_AVAILABLE will
indicate that the current analyzer does not have this capability.

5. Call bg_usb_configure to configure the capture settings. The input arguments
determine if a USB 2.0, USB 3.0, or a simultaneous capture is to be performed.
This function is also used to set how the capture will be triggered by an event or
immediately. Event triggers are supported only for analyzers with on-board
triggering capability, and only the Beagle USB 5000 SuperSpeed Protocol
Analyzers support USB 3.0 and simultaneous captures. It is not necessary to call
this function for either the Beagle 12 or 480, since the only supported settings are
default upon opening the analyzer with bg_open .

6. Call one (or more) of the following functions to setup the capture trigger for
analyzers with on-board triggering capability:

◦ bg_usb2_simple_match_config – trigger on GPIO input or USB 2.0
event set in bg_usb2_digital_out_match

◦ bg_usb2_complex_match_config_enable – trigger on USB 2.0
complex match

◦ bg_usb3_simple_match_config – trigger on simple USB 3.0 match
event

◦ bg_usb3_complex_match_config_enable – trigger on USB 3.0
complex match

It is not necessary to call any of these functions if the capture has been set to
trigger immediately in bg_usb_configure.

7. Call bg_enable to activate the Beagle analyzer and start monitoring data.

Once the capture has been triggered, data may be downloaded from the
hardware buffer(s) by calling bg_usb_read or, for USB 2.0-only captures,
bg_usb2_read.

6.8.3 USB Monitor Interface

Check Available Features (bg_usb_features)

 int bg_usb_features (Beagle beagle);

Return licensed features on analyzer.

Beagle Protocol Analyzer User Manual

129

Arguments

beagle handle of a Beagle analyzer

Return Value

This function returns a positive integer that represents what features are licensed on
the analyzer, as detailed in Table 26. This function can also return a negative value
indicating an error.

Specific Error Codes

None.

Details

The returned integer is a bitmask that indicates the features which are licensed on
the Beagle, as detailed in Table 26.

The Beagle USB 12 and the Beagle USB 480 Protocol Analyzers only return
BG_USB_FEATURE_USB2_MON since they cannot be licensed for additional
features.

V current/voltage monitoring is currently only available for the Beagle USB 480
Power Protocol Analyzer.

Table 26 : Beagle USB Features

BG_USB_FEATURE_NONE No features are licensed

BG_USB_FEATURE_USB2_MON USB 2.0 captures may
be performed

BG_USB_FEATURE_USB3_MON USB 3.0 captures may
be performed

BG_USB_FEATURE_SIMUL_23 Simultaneous USB 2.0 &
USB 3.0 captures may
be performed

BG_USB_FEATURE_USB3_CMP_TRIG USB 3.0 Complex
triggering licensed

BG_USB_FEATURE_USB3_4G_MEM 4GB buffer memory
available

BG_USB_FEATURE_USB2_CMP_TRIG USB 2.0 Complex
triggering licensed

BG_USB_FEATURE_CROSS_ANALYZER_SYNC Analyzers may be
synchronized using back
panel HDMI ports

Beagle Protocol Analyzer User Manual

BUS

130

BG_USB_FEATURE_IV_MON_LITE V current/voltage
monitoring licensed

Read License Key (bg_usb_license_read)

 int bg_usb_license_read (Beagle beagle,
 int length,
 u08 * license);

Read the license key from the devi+ce.

Arguments

beagle handle of a Beagle analyzer

length should be BG_USB_LICENSE_LENGTH

license filled with buffer license string

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

BG_FUNCTION_NOT_AVAILABLE Function not supported by device.

Details

This function is not supported for the Beagle USB 12 and the Beagle USB 480
Protocol Analyzers.

Function will only write license to buffer if length is BG_USB_LICENSE_LENGTH
and the license buffer is large enough to accomodate a string of that size.

Write License Key (bg_usb_license_write)

 int bg_usb_license_write (Beagle beagle,
 int length,
 const u08 * license);

Write the license key to the device.

Arguments

beagle handle of a Beagle analyzer

length should be BG_USB_LICENSE_LENGTH

license buffer which contains license string.

Beagle Protocol Analyzer User Manual

BUS

131

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

BG_FUNCTION_NOT_AVAILABLE Function not supported by
device.

BG_INVALID_LICENSE License key was invalid or
length was not the proper
size

Details

This function is not supported for the Beagle USB 12 and the Beagle USB 480
Protocol Analyzers.

Function will only write license string if length is BG_USB_LICENSE_LENGTH and
the license string is valid.

Configure USB Capture (bg_usb_configure)

 int bg_usb_configure (Beagle beagle,
 u08 capture_mask,
 BeagleUsbTriggerMode trigger_mode);

Configure the capture.

Arguments

beagle handle of a Beagle analyzer

capture_mask bitmask specifying what kind of capture to perform,
as shown in Table 27

trigger_mode enumerated value specifying how capture is
triggered, as shown in Table 28

Table 27 : Capture Masks

BG_USB_CAPTURE_USB2 Capture USB 2.0 traffic

BG_USB_CAPTURE_USB3 Capture USB 3.0 traffic

BG_USB_CAPTURE_IV_MON_LITE Capture V voltage and current readings

Table 28 : BeagleUsbTriggerMode enumerated values

BG_USB_TRIGGER_MODE_EVENT Trigger on match event

Beagle Protocol Analyzer User Manual

BUS

132

BG_USB_TRIGGER_MODE_IMMEDIATE Trigger immediately

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

BG_CONFIG_ERROR An attempt was made to
configure the Beagle with invalid
settings.

BG_FUNCTION_NOT_AVAILABLE An attempt was made to enable
an unlicensed or unsupported
feature.

Details

Only the Beagle USB 5000 SuperSpeed Protocol Analyzers support USB 3.0
captures.

Only Beagle 5000 units with the option A upgrade are capable of performing
simultaneous USB 2.0 and USB 3.0 captures.

Only analyzers with on-board triggering capability support triggering on match event.
The default trigger mode is trigger immediate for all Beagle USB abalyzers.

When called with the Beagle USB 12 or the Beagle USB 480 analyzer, the only
acceptable values are cap_mask = BG_USB_CAPTURE_USB2 and
trigger_mode = BG_USB_TRIGGER_MODE_IMMEDIATE since these devices
only have USB 2.0 capture capability and do not have on-board triggering. In fact, it
is not necessary to call this function for either the Beagle 12 or 480 since these
settings are default upon opening the analyzer with bg_open.

BG_USB_CAPTURE_IV_MON_LITE is currently supported by the Beagle USB 480
Power Protocol Analyzer only and it must be specified in conjunction with
BG_USB_CAPTURE_USB2. The bitmask will enable the monitoring and delivery of V

 current and voltage measurements in the USB2 data stream. See
bg_usb_read() in Section 6.8.3.6 for more details.

Configure USB Target Power (bg_usb_target_power)

 int bg_usb_target_power (Beagle beagle,
 BeagleUsbTargetPower power_flag);

Control V provided to target device.

Beagle Protocol Analyzer User Manual

BUS

BUS

133

Arguments

beagle handle of a Beagle analyzer

power_flag enumerated value which controls V as detailed in Table 29

Table 29 : Target Power Enums

BG_USB_TARGET_POWER_HOST_SUPPLIED Connect target V to host V

BG_USB_TARGET_POWER_OFF Disconnect target V from host V

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

BG_FUNCTION_NOT_AVAILABLE Function not supported by device.

Details

This function is not supported for the Beagle USB 12 and the Beagle USB 480
Protocol Analyzers.

This function can be used to reset the target device by disconnecting V .

Read USB (bg_usb_read)

 int bg_usb_read (Beagle beagle,
 u32 * status,
 u32 * events,
 u64 * time_sop,
 u64 * time_duration,
 u32 * time_dataoffset,
 BeagleUsbSource * source,
 int max_bytes,
 u08 * packet,
 int max_k_bytes,
 u08 * k_data);

Read data from the analyzer.

Arguments

beagle handle of a Beagle analyzer

status filled with the status bitmask as detailed in Table
11 and Table 19

Beagle Protocol Analyzer User Manual

BUS

BUS BUS

BUS BUS

BUS

134

events filled with the event bitmask as detailed in Tables
20, 21, 22, 24, 25, and 23

time_sop filled with the timestamp when data appeared on
the bus

time_duration filled with the number of ticks that it took to read
the data

time_dataoffset this is always 0

source filled with source of USB packet as detailed in
Table 30

max_bytes maximum number of data bytes to read

packet an allocated array of u08 which is filled with the
received data

max_k_bytes number of k data bytes to read

k_data filled with k data flags

Table 30 : BeagleUsbSource enumerated values

BG_USB_SOURCE_USB3_ASYNC Asynchronous stream

BG_USB_SOURCE_USB3_RX USB 3.0 Upstream

BG_USB_SOURCE_USB3_TX USB 3.0 Downstream

BG_USB_SOURCE_USB2 USB 2.0

BG_USB_SOURCE_IV_MON V voltage and current stream

Return Value

This function returns the number of bytes read or a negative value indicating an
error.

Specific Error Codes

BG_FUNCTION_NOT_AVAILABLE Beagle is not running a capture
or function not supported by
device.

BG_CAPTURE_NOT_TRIGGERED Capture has not been triggered
yet.

Details

This function can be called to download data from any Beagle USB analyzer. The
argument list is the superset of what is required for USB 2.0 and USB 3.0 traffic. If
the analyzer does not support USB 3.0, or is not enabled for USB 3.0 capture, the
irrelevant arguments will be unused (and can optionally be set to 0).

Beagle Protocol Analyzer User Manual

BUS

135

The function will block until the requested amount of data is captured, a complete
packet with the appropriate end of packet condition is observed, or the bus is idle for
longer than the timeout interval set. See Section 6.4.1.12 for information on the
bg_latency() and bg_timeout() functions which affect the behavior of this
function.

The packet array should be allocated at least as large as max_bytes.

All of the timing data is measured in ticks of the sample rate clock. The Beagle
USB 12 analyzer is locked to a 48 MHz sample rate, thus each count measures
20.83 ns.

The first byte of the USB packet is the packet ID. An enumeration is provided that
defines all the possible packet IDs in Table 18.

In addition to the general read status values in Table 11, there are USB specific
status values enumerated in Table 19. The user should be aware of the
BG_READ_USB_END_OF_CAPTURE status code, which will be returned if the
bg_usb_read() function is called after a capture has completed.

The events enumeration describes specific events that have occurred during the
USB capture. By masking the events value with the ones detailed in Tables 20, 21,
22, 24, 25, and 23 the user can determine whether a specific event has occurred.

It should also be noted that if a packet is returned when in truncated mode, the
packet length will be limited to 4 bytes. The function will still return the true length of
the packet, however only up to the first 4 bytes of data will be inserted into the
packet array. The remaining bytes will be filled with 0s.

Also, the use of digital inputs may cause certain bus events to appear out of order.
See Section 3.4.3 for more information.

The k_data buffer should be 1/8th the size of packet. k_data is filled with flags
which specify that the corresponding data in packet is a D-Symbol or K-Symbol.
For example, if bit N of k_data is 1, then byte N of packet is a K-symbol.

If source is BG_USB_SOURCE_IV_MON and events is non-zero, the packet
indicates a V trigger event occurred. If events is zero, packet contains V

Beagle Protocol Analyzer User Manual

BUS BUS

136

voltage and current data. Call bg_iv_mon_parse() to parse the packet and
retrieve the values. See bg_iv_mon_parse() in Section 6.10.2.2 for more details.

Configure Statistics System (bg_usb_stats_config)

 int bg_usb_stats_config (Beagle beagle,
 const BeagleUsbStatsConfig * config);

Configure the hardware-based USB statistics system.

Arguments

beagle handle of a Beagle analyzer

config configuration values for the statistics system

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

BG_FUNCTION_NOT_AVAILABLE Function not supported by device.

Details

This function is used to configure the hardware-based USB statistics system on the
Beagle USB analyzer. This function is not supported for the Beagle USB 12 and the
Beagle USB 480 Protocol Analyzers.

The config field should be used to pass desired configuration parameters.

 /* Hardware-based USB statistics configuration */
 struct BeagleUsbStatsConfig {
 u08 auto_config;
 BeagleUsbMatchType source_match_type;
 BeagleUsbSource source_match_val;
 BeagleUsbMatchType ep_match_type;
 u08 ep_match_val;
 BeagleUsbMatchType dev_match_type;
 u08 dev_match_val;
 };

Table 31 : BeagleUsbStatsConfig field descriptions

auto_config A non-zero value enables automatic device
address configuration

Beagle Protocol Analyzer User Manual

137

source_match_type Enable or disable stream direction matching

source_match_val The source stream (TX/RX) on which to
match

ep_match_type Configure or disable endpoint matching

ep_match_val The endpoint number on which to match

dev_match_type Configure or disable device address
matching

dev_match_val The device address on which to match

Connection-Specific USB 3.0 Statistics

In addition to tracking USB 3.0 and USB 2.0 bus-level statistics, the hardware-based
USB statistics system is capable of tracking statistics that are specific to a particular
USB 3.0 device, endpoint and stream direction. This capability should be configured
before starting a capture.

Each connection parameter is represented by two separate fields: type and value.
The BeagleUsbMatchType enumerated type is used to determine whether a
connection value field should be disabled, match on equal, or match on not equal.
The different enumerated values are listed below. Restrictions on usage are
indicated by footnotes.

• BG_USB_MATCH_TYPE_DISABLED

• BG_USB_MATCH_TYPE_EQUAL

• BG_USB_MATCH_TYPE_NOT_EQUAL (1)

(1) Only valid when used in the dev_match_type or ep_match_type fields

The BeagleUsbSource enumerated type is used to choose between the TX and
RX stream directions. The different enumerated values are listed below.

• BG_USB_SOURCE_USB3_RX

• BG_USB_SOURCE_USB3_TX

Automatic Configuration of the Device Address

To help resolve cases where the device address is unknown, or changes upon each
enumeration of the device, an automatic device address configuration feature is
available. When this feature is enabled, the analyzer will automatically set the

Beagle Protocol Analyzer User Manual

138

dev_match_val field to the address observed in the first Set Address device
request. To enable this feature, pass a non-zero value in the auto_config field.

Auto config affects fields dev_match_type and dev_match_val. While it isnt
necessary to configure these two fields to non-zero values when using auto config,
endpoint and source stream fields should still be configured. Once the analyzer has
determined the device address, the user-provided endpoint and source stream
settings will be used to perform statistics tracking.

Automatic device address configuration is not instantaneous, and requires that a
Set Address device request be observed on the bus by the analyzer. To check the
status of device address configuration, use the bg_usb_stats_config_query
function, as described below.

When enabled, automatic device address configuration occurs only once until re-
enabled by another call to bg_usb_stats_config. A device address set by
automatic configuration will persist until analyzer reset, or until another call to this
configuration function. In other words, if you use auto configuration at one point, and
want to use it again later, say to detect a new device address, you will need to re-
enable the feature with a call to bg_usb_stats_config.

Query Statistics System Configuration (bg_usb_stats_config_query)

 int bg_usb_stats_config_query (Beagle beagle,
 BeagleUsbStatsConfig * config);

Query the hardware-based USB statistics system for its current configuration.

Arguments

beagle handle of a Beagle analyzer

config filled with the current statistics system configuration

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

BG_FUNCTION_NOT_AVAILABLE Function not supported by device.

Details

This function is used to query the current configuration of the hardware-based USB
statistics system on the Beagle USB analyzer. This function is not supported for the
Beagle USB 12 and the Beagle USB 480 Protocol Analyzers.

Beagle Protocol Analyzer User Manual

139

The config field is populated with the current configuration. Most of the fields in
the BeagleUsbStatsConfig (Table 31) structure will be the same as the values
you passed into the bg_usb_stats_config function. The main use case of this
function is to query the status of automatic device address configuration.

Pay close attention to the auto_config, dev_match_type, and
dev_match_val fields. If auto_config was set to a non-zero value (enabling the
automatic configuration feature) on configuration, a value of zero on query indicates
successful device address configuration. Once device address configuration is
complete, you can check the device address value by inspecting the
dev_match_val field.

Reset Statistics Counts (bg_usb_stats_reset)

 int bg_usb_stats_reset (Beagle beagle);

Reset the hardware-based USB statistics counts.

Arguments

beagle handle of a Beagle analyzer

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

BG_FUNCTION_NOT_AVAILABLE Function not supported by device.

Details

This function is used to reset the current hardware-based USB statistics system
counts on the Beagle USB analyzer. This function is not supported for the Beagle
USB 12 and the Beagle USB 480 Protocol Analyzers.

Statistics counts are summed continuously during a capture. To reset all of the
counts, simply call this function with a valid handle.

Read Statistics Counts (bg_usb_stats_read)

 int bg_usb_stats_read (Beagle beagle,
 BeagleUsbStats * config);

Read hardware-based USB statistics counts.

Beagle Protocol Analyzer User Manual

140

Arguments

beagle handle of a Beagle analyzer

stats filled with the hardware-based statistics counts

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

BG_FUNCTION_NOT_AVAILABLE Function not supported by device.

Details

This function is not supported for the Beagle USB 12 and the Beagle USB 480
Protocol Analyzers.

This function is used to read hardware-based USB statistics counts from the Beagle
USB analyzer. Top-level and children statistics structures are detailed below.

/* Hardware-based USB statistics counts */
/* top-level structure */
struct BeagleUsbStats {
 BeagleUsb3GenStats usb3_tx_gen;
 BeagleUsb3GenStats usb3_rx_gen;
 BeagleUsb3ConnStats usb3_tx_conn;
 BeagleUsb3ConnStats usb3_rx_conn;
 BeagleUsb2Stats usb2;
};

Table 32 : BeagleUsbStats field descriptions

usb3_tx_gen USB 3.0 TX general counts

usb3_rx_gen USB 3.0 RX general counts

usb3_tx_conn USB 3.0 TX connection-specific counts

usb3_rx_conn USB 3.0 RX connection-specific counts

usb2 USB 2.0 counts

Table 33 : BeagleUsb3GenStats field descriptions

link Any link commands

lbad LBAD link commands

slc_crc5 CRC5 failing in SLC

Beagle Protocol Analyzer User Manual

141

txn Any transaction packets

lmp Any link management packets

lgo_ux LGO_Ux link commands (U1, U2, U3)

dp Any data packets

itp Any isochronous timestamp packets

shp_crc16_crc5 CRC16/CRC5 failing in SHP

sdp_crc32 CRC32 failing in SDP

slc_frm_err SLC framing errors

shp_frm_err SHP framing errors

sdp_end_edb_frm_err SDP/END/EDB framing errors

iso_ips Isolated inter-packet signaling packets

para_ips Parasitic inter-packet signaling packets

carry_1k_dp Number of times data was transferred in
chunks of 1 KB

Table 34 : BeagleUsb3ConnStats field descriptions

txn Qualified transaction packets

dp Qualified data packets

ack Qualified ACK transaction packets

nrdy Qualified NRDY transaction packets

erdy Qualified ERDY transaction packets

retry_ack Qualified ACK transaction packets with retry flag set

carry_1k_dp Number of times qualified data was transferred in chunks of 1 KB

Table 35 : BeagleUsb2Stats field descriptions

sof SOF packets

carry_1k_data Number of times data was transferred in chunks of 1 KB

data Any DATA packets (DATA0/1/2/M)

bad_pid Packets with corrupted PID

crc16 Packets with failing CRC16

crc5 Packets with failing CRC5

rx_error Packets marked with rxerror

in_nak IN-NAK packet-pairs

ping_nak PING-NAK packet-pairs

Beagle Protocol Analyzer User Manual

142

Connection-Specific USB 3.0 Statistics

Connection-specific statistics correspond to a particular USB 3.0 device address,
endpoint number and stream direction. Settings for connection-specific statistics
must be configured prior to starting a capture, or these statistics will not be tracked.

Use bg_usb_stats_config to configure the device, endpoint, and stream
direction you would like these statistics fields to track. See Section 6.8.3.7 for
details.

Resetting Statistics Counts

To manually reset all of the statistics counts, use bg_usb_stats_reset. See
Section 6.8.3.9 for details.

6.8.4 USB Monitor Interface (USB 2.0)

Configure USB 2.0 Capture (bg_usb2_capture_config)

 int bg_usb2_capture_config (Beagle beagle,
 BeagleUsb2CaptureMode capture_mode);

Configure the capture mode.

Arguments

beagle handle of a Beagle analyzer

capture_mode mode of packet capture as detailed in Table 36

Table 36 : BeagleUsb2CaptureMode enumerated values

BG_USB2_CAPTURE_REALTIME Configure to real-time
capture

BG_USB2_CAPTURE_REALTIME_WITH_PROTECTION Configure to real-time
capture with overflow
protection

BG_USB2_CAPTURE_DELAYED_DOWNLOAD Configure to delayed-
download mode

Return Value

Beagle Protocol Analyzer User Manual

143

A Beagle status code of BG_OK is returned on success or an error code as detailed
in Table 74.

Specific Error Codes

BG_STILL_ACTIVE An attempt was made to change the
configuration while the capture was still active.

BG_CONFIG_ERROR An attempt was made to set an invalid
configuration.

Details

The capture_mode option specifies whether the capture will be in real-time, real-
time with truncation, or delayed-download mode. For more details on the different
modes of capture, refer to Section 3.4.6.

All Beagle USB analyzers support real-time capture mode, but only the Beagle
USB 480 analyzers support real-time with truncation and delayed-download modes.

Configure Capture (bg_usb2_capture_buffer_config)

 int bg_usb2_capture_buffer_config (Beagle beagle,
 u32 pretrig_kb,
 u32 capture_kb);

Configure USB 2.0 hardware capture buffer.

Arguments

beagle handle of a Beagle analyzer

pretrig_kb amount (in kB) of pre-trigger data to capture

capture_kb total amount (in kB) of data to capture

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

BG_CONFIG_ERROR An attempt was made to set an invalid configuration.

Details

This function is supported only for analyzers with on-board triggering capability.

Beagle Protocol Analyzer User Manual

144

The USB 2.0 hardware capture buffer is 128MB, so capture_kb may have a
maximum value of 131,072.

The size of capture_kb includes pretrig_kb. Attempting to set pretrig_kb
greater than capture_kb will return an error.

To run an infinite capture, set capture_kb to
BG_USB_CAPTURE_SIZE_INFINITE.

If running a simultaneous capture, it is possible to copy the pretrig-to-capture ratio
used for the USB 3.0 capture by assigning capture_kb to
BG_USB_CAPTURE_SIZE_SCALE.

Query Capture Config (bg_usb2_capture_buffer_config_query)

 int bg_usb2_capture_buffer_config_query (Beagle beagle,
 u32 * pretrig_kb,
 u32 * capture_kb);

Query the current USB 2.0 hardware capture buffer configuration.

Arguments

beagle handle of a Beagle analyzer

pretrig_kb filled with USB 2.0 pre-trigger size

capture_kb filled with USB 2.0 total capture size

Return Value

This function returns the size of the available USB 2.0 hardware capture buffer.

Specific Error Codes

None.

Details

Query the hardware capture buffer configuration set in
bg_usb2_capture_buffer_config.

If an infinite or scaled USB 2.0 capture has been configured, capture_kb will be
filled with the appropriate constant from Table 37.

For analyzers that do not have on-board triggering capability, pretrig_kb will
return 0, and capture_kb will return the buffer size. For the Beagle 480, 65536 (or

Beagle Protocol Analyzer User Manual

145

64 MB) will be returned for capture_kb since there is a 64 MB post-trigger buffer
available. For the Beagle 12, capture_kb will be returned as 0 since there is
essentially no on-board capture buffer.

Table 37 : capture_kb constants

BG_USB_CAPTURE_SIZE_INFINITE Infinite capture

BG_USB_CAPTURE_SIZE_SCALE Copy pretrig-to-capture ratio
from USB 3.0 buffer
configuration

Configure Target (bg_usb2_target_config)

 int bg_usb2_target_config (Beagle beagle,
 u32 target_config);

Specify the speed of the USB 2.0 target link.

Arguments

beagle handle of a Beagle analyzer

target_config target configuration as detailed in Table 38 which
includes the intended speed of the USB 2.0 link and
an option to start the capture without the target host V

Table 38 : Beagle Usb2 Target Config constants

BG_USB2_AUTO_SPEED_DETECT Configure to auto-detect the bus speed

BG_USB2_LOW_SPEED Configure to lock to low-speed capture

BG_USB2_FULL_SPEED Configure to lock to full-speed capture

BG_USB2_HIGH_SPEED Configure to lock to high-speed capture

BG_USB2_VBUS_OVERRIDE Configure to not require V or capture

Return Value

A Beagle status code of BG_OK is returned on success or an error code as detailed
in Table 74.

Specific Error Codes

Beagle Protocol Analyzer User Manual

BUS

BUS

146

BG_STILL_ACTIVE An attempt was made to change
the configuration while the
capture was still active.

BG_FUNCTION_NOT_AVAILABLE Function not supported by device.

Details

This function is not supported for the Beagle USB 12 Protocol Analyzers, since the
Beagle 12 always performs in auto-detection mode for full- and low-speed buses.

The target_config option specifies the speed of communication on the target
bus and whether the analyzer should operate without the target host V . The
Beagle USB Analyzer may be configured to auto-detect the speed, or may
alternatively be locked to monitor only a single communication speed. Additionally,
the Analyzer also monitors the target host V to detect if a host is present and it
will not start capturing traffic if there is no V or if V is under 5 V. This
requirement can be overridden by the BG_USB2_VBUS_OVERRIDE flag (the speed
constants are mutually exclusive but BG_USB2_VBUS_OVERRIDE is a bit mask). For
more details please refer to Knowledge Base Article 10058.

Enable Digital Output (bg_usb2_digital_out_config)

 int bg_usb2_digital_out_config (Beagle beagle,
 u08 out_enable_mask,
 u08 out_polarity_mask);

Enable Beagle analyzer to output a specific match type on output pins (for USB 2.0).

Arguments

beagle handle of a Beagle analyzer

out_enable_mask bitmask of enabled output pins as
detailed in Table 39

out_polarity_mask bitmask of polarity on outputs pins as
detailed in Table 40

Table 39 : Digital Output Pin Enable bit mask

BG_USB2_DIGITAL_OUT_ENABLE_PIN1 Enables Output Pin 1

BG_USB2_DIGITAL_OUT_ENABLE_PIN2 Enables Output Pin 2

BG_USB2_DIGITAL_OUT_ENABLE_PIN3 Enables Output Pin 3

BG_USB2_DIGITAL_OUT_ENABLE_PIN4 Enables Output Pin 4

Table 40 : Digital Output Pin Polarity bit mask

Beagle Protocol Analyzer User Manual

BUS

BUS

BUS BUS

147

BG_USB2_DIGITAL_OUT_PIN1_ACTIVE_HIGH Output Pin 1 idles low

BG_USB2_DIGITAL_OUT_PIN1_ACTIVE_LOW Output Pin 1 idles high

BG_USB2_DIGITAL_OUT_PIN2_ACTIVE_HIGH Output Pin 2 idles low

BG_USB2_DIGITAL_OUT_PIN2_ACTIVE_LOW Output Pin 2 idles high

BG_USB2_DIGITAL_OUT_PIN3_ACTIVE_HIGH Output Pin 3 idles low

BG_USB2_DIGITAL_OUT_PIN3_ACTIVE_LOW Output Pin 3 idles high

BG_USB2_DIGITAL_OUT_PIN4_ACTIVE_HIGH Output Pin 4 idles low

BG_USB2_DIGITAL_OUT_PIN4_ACTIVE_LOW Output Pin 4 idles high

Return Value

A Beagle status code of BG_OK is returned on success or an error code as detailed
in Table 74.

Specific Error Codes

BG_CONFIG_ERROR An attempt was made to set an
invalid configuration.

BG_FUNCTION_NOT_AVAILABLE Function not supported by
device.

Details

This function is not supported for the Beagle USB 12 Protocol Analyzers.

Pins are triggered by particular events which are detailed in Section 3.4.4. Please
refer to Section 3.4.4 for the hardware specifications of the output pins.

The out_enable_mask input is a bitmask of the parameters listed in Table 39. By
using a bit-wise OR operation, multiple output pins can be enabled. It is important to
note that calling this function will disable all pins that are not explicitly set in the
out_enable_mask input.

The out_polarity_mask input configures the polarity of the output. Like
out_enable_mask, this bitmask allows the user to configure multiple pins through
a bit-wise OR operation. The default configuration is active low. If a pin is attempted
to be configured as both active low and active high, then it will only actually
configure to active high.

Digital output lines will activate as soon as their triggering event is fully confirmed.

Beagle Protocol Analyzer User Manual

148

Match Digital Output (bg_usb2_digital_out_match)

 int bg_usb2_digital_out_match (
 Beagle beagle,
 BeagleUsb2DigitalOutMatchPins pin_num,
 BeagleUsb2PacketMatch * packet_match,
 BeagleUsb2DataMatch * data_match);

Enable Beagle analyzer to output match on a particular bus data (for USB 2.0).

Arguments

beagle handle of a Beagle analyzer

pin_num output pins to be enabled as detailed in Table 41

packet_match USB packet header information and Boolean
operations that the Beagle analyzer can match
packet headers with

data_match USB packet data and Boolean operations that the
Beagle USB analyzer can match incoming packet
data with

Return Value

A Beagle status code of BG_OK is returned on success or an error code as detailed
in Table 74.

Specific Error Codes

BG_STILL_ACTIVE An attempt was made to change
the configuration while the capture
was still active.

BG_CONFIG_ERROR An attempt was made to set an
invalid configuration.

BG_FUNCTION_NOT_AVAILABLE Function not supported by device.

Details

This function is not supported for the Beagle USB 12 Protocol Analyzers.

The function is used to configure the output pins of the digital I/O port to trigger on
specific events. This function should be called repeatedly for each pin that must be
configured.

Output pins 1 and 2 do not use the packet_match and data_match inputs, as
they do not require that extra information. They are therefore completely

Beagle Protocol Analyzer User Manual

149

configurable from the bg_usb2_digital_out_config() function and calling this
function on either of those pins will return BG_CONFIG_ERROR.

Output pin 3 does not use the data_match input because it does not have that
functionality. A dummy structure or null can be used for the data_match argument.
In either case, the argument is ignored.

The BeagleUsb2PacketMatch and BeagleUsb2DataMatch must be used to
correctly configure the matching capabilities of Output Pins 3 and 4.

The BeagleUsb2PacketMatch structure describes the packet parameters that
need to be matched.

Table 41 : BeagleUsb2DigitalOutMatchPins enumerated values

BG_USB2_DIGITAL_OUT_MATCH_PIN3 Selects Output Pin 3

BG_USB2_DIGITAL_OUT_MATCH_PIN4 Selects Output Pin 4

 /* Digital ouput matching configuration */
 struct BeagleUsb2PacketMatch {
 BeagleUsb2MatchType pid_match_type;
 u08 pid_match_val;
 BeagleUsb2MatchType dev_match_type;
 u08 dev_match_val;
 BeagleUsb2MatchType ep_match_type;
 u08 ep_match_val;
 };

The BeagleUsb2DataMatch structure describes the data sequence that need to
be matched.

 struct BeagleUsb2DataMatch {
 BeagleUsb2MatchType data_match_type;
 u08 data_match_pid;
 u16 data_length;
 u08 * data;
 u16 data_valid_length;
 u08 * data_valid;
 };

The BeagleUsb2MatchType enumerated type is used throughout the two
structures to determine whether the match should assert on the values being equal,

Beagle Protocol Analyzer User Manual

150

not equal, or dont care (disabled). The different enumerated types are described in
the following table.

Table 42 : BeagleUsb2MatchType enumerated values

BG_USB2_MATCH_TYPE_DISABLED The match type is disabled

BG_USB2_MATCH_TYPE_EQUAL The match type must equal

BG_USB2_MATCH_TYPE_NOT_EQUAL The match type must not equal

The BeagleUsb2DataMatch structure has its own field for checking PIDs. This
field is a bitmask for each of the four types of data packets and is described in the
following table.

Table 43 : Data Match PID bit mask

BG_USB2_DATA_MATCH_DATA0 Enable match on data with DATA0 PID

BG_USB2_DATA_MATCH_DATA1 Enable match on data with DATA1 PID

BG_USB2_DATA_MATCH_DATA2 Enable match on data with DATA2 PID

BG_USB2_DATA_MATCH_MDATA Enable match on data with MDATA PID

Since the BeagleUsb2DataMatch has its own fields for matching the PID, using
the structure will therefore overwrite the PID settings defined in
BeagleUsb2PacketMatch. Furthermore, the data matching is determined through
two arrays. The data array determines which values the user would like to match.
The first byte of this array would correlate to the first byte of the packet. The second
array, data_valid, determines which of those bytes in the data array are valid for
matching. Setting a byte to zero in the data_valid array means that byte is a
dont-care condition for the matching algorithm.

The digital outputs activate as soon as their triggering event can be fully confirmed.
Thus, Pins 1 and 2 will activate as soon as the capture activates or rxactive goes
high, respectively. However, Pins 3 and 4 must assure a match of all of their
characteristics. Therefore, only once all possible PIDs, device address, and
endpoints of a given packet are checked completely can the output activate. The
assertion of matched data on Pin 4 must wait until the end of the data packet to
assure a match. Packets that are shorter then what is defined by the
BeagleUsb2DataMatch structure may still activate Pin 4 if all the data up to that
point matched correctly.

Enable USB 2.0 Digital Input (bg_usb2_digital_in_config)

 int bg_usb2_digital_in_config (Beagle beagle,
 u08 in_enable_mask);

Beagle Protocol Analyzer User Manual

151

Configures the analyzer to report an event on changes to the external inputs on the
Digital I/O port (for USB 2.0).

Arguments

beagle handle of a Beagle analyzer

in_enable_mask bitmask of enabled input pins as detailed in Table 44

Table 44 : Digital Input Pin Enable bit mask

BG_USB2_DIGITAL_IN_ENABLE_PIN1 Enable input pin 1

BG_USB2_DIGITAL_IN_ENABLE_PIN2 Enable input pin 2

BG_USB2_DIGITAL_IN_ENABLE_PIN3 Enable input pin 3

BG_USB2_DIGITAL_IN_ENABLE_PIN4 Enable input pin 4

Return Value

A Beagle status code of BG_OK is returned on success or an error code as detailed
in Table 74.

Specific Error Codes

BG_FUNCTION_NOT_AVAILABLE Function not supported by device.

Details

This function is not supported for the Beagle USB 12 Protocol Analyzers.

The Beagle USB analyzer digital I/O port has four pins allocated for digital inputs.
These digital inputs will display events in-line with collected data. For further details
on the digital inputs refer to Section 3.4.4 and Section 3.4.3.

The in_enable_mask is a bitmask of the parameters listed in Table 44. By using a
bit-wise OR operation, multiple input pins can be enabled. It is important to note that
calling this function will disable all pins that are not explicitly set in the
enable_mask input.

Enable Simple Matching (bg_usb2_simple_match_config)

 int bg_usb2_simple_match_config (
 Beagle beagle,
 u08 dig_in_pin_pos_edge_mask,
 u08 dig_in_pin_neg_edge_mask,

Beagle Protocol Analyzer User Manual

152

 u08 dig_out_match_pin_mask);

Configure the USB 2.0 simple matching system for triggering.

Arguments

beagle handle of a Beagle analyzer

dig_in_pin_pos_edge_mask bitmask of positive digital
input edge(s) to match on

dig_in_pin_neg_edge_mask bitmask of negative digital
input edge(s) to match on

dig_out_match_pin_mask bitmask of digital output pins
to match on

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

BG_CONFIG_ERROR An attempt was made to set an
invalid configuration.

BG_FUNCTION_NOT_AVAILABLE Function not supported by
device.

Details

This function is supported only for analyzers with on-board triggering capability.

Only bits [3:0] can be set in either of the input pin edge masks. Similarly, only bits
[3:1] can be set in dig_out_match_pin_mask. Setting invalid bits will cause this
function to return BG_CONFIG_ERROR.

When a simple match is detected, the capture will be triggered. Note that this
function is different than enabled_digital_input, which reports an event but
does not trigger the capture.

Enable Hardware Filter (bg_usb2_hw_filter_config)

 int bg_usb2_hw_filter_config (Beagle beagle,
 u08 filter_enable_mask};

Specify hardware filtering modes.

Arguments

beagle handle of a Beagle analyzer

Beagle Protocol Analyzer User Manual

153

filter_enable_mask hardware filtering configuration
definitions as detailed in Table 45

Table 45 : Hardware Filter Enable bit mask

BG_USB2_HW_FILTER_PID_SOF Filter SOF packets

BG_USB2_HW_FILTER_PID_IN Filter IN + ACK IN + NAK packet groups

BG_USB2_HW_FILTER_PID_PING Filter PING + NAK packet groups

BG_USB2_HW_FILTER_PID_PRE Filter PRE packet groups

BG_USB2_HW_FILTER_PID_SPLIT Filter SPLIT packet groups

BG_USB2_HW_FILTER_SELF Filter packets intended for Beagle analyzer

Return Value

A Beagle status code of BG_OK is returned on success or an error code as detailed
in Table 74.

Specific Error Codes

BG_FUNCTION_NOT_AVAILABLE Function not supported by device.

Details

This function is not supported for the Beagle USB 12 Protocol Analyzers.

The Beagle USB Analyzer is capable of filtering out data-less transactions before
being saved for capture. This option can be especially useful for saving memory on
the analysis PC and on the hardware buffer.

To enable the filtering, simply use the bitmask detailed in Table 45. By using a bit-
wise OR operation, multiple filters can be enabled. It is important to note that calling
this function will disable all filters that are not explicitly set in the filter_config
input.

For more detailed information on the hardware filters, please refer to Section 3.4.5.

Configure External Output (bg_usb2_extout_config)

 int bg_usb2_extout_config (
 Beagle beagle,
 BeagleUsbExtoutType extout_modulation);

Configure Output Pin 1 settings used for match/action EXTOUT.

Arguments

Beagle Protocol Analyzer User Manual

154

beagle handle of a Beagle analyzer

extout_modulation mode of EXTOUT signal modulation

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

BG_CONFIG_ERROR An attempt was made to set an
invalid configuration.

BG_FUNCTION_NOT_AVAILABLE Function not supported by
device.

Details

This function is supported only for analyzers with on-board triggering capability.

The EXTOUT modulation specified in this function only applies to Output Pin 1.
When the complex match system is enabled, it will override the Output Pin 1
settings as configured in the usb2_digital_out functions. Any assertions of the
external output by the match/action system are done through Output Pin 1. The
modulation on Output Pin 1 in these scenarios is set using this function.

The BeagleUsbExtoutType enumerated type is used to set the mode of EXTOUT
signal modulation. The different enumerated types are described in the table below.
Note that these values are a subset of the values available in USB 3.0 (Section
6.8.5.7).

Table 46 : BeagleUsbExtoutType enumerated values

BG_USB_EXTOUT_POS_PULSE Positive pulse

BG_USB_EXTOUT_NEG_PULSE Negative pulse

BG_USB_EXTOUT_TOGGLE_0 Toggle (initial value LOW)

BG_USB_EXTOUT_TOGGLE_1 Toggle (initial value HIGH)

Configure Complex Matching (bg_usb2_complex_match_config)

 int bg_usb2_complex_match_config (
 Beagle beagle,
 u08 validate,
 u08 digout,
 BeagleUsb2ComplexMatchState *state_0,
 BeagleUsb2ComplexMatchState *state_1,
 BeagleUsb2ComplexMatchState *state_2,

Beagle Protocol Analyzer User Manual

155

 BeagleUsb2ComplexMatchState *state_3,
 BeagleUsb2ComplexMatchState *state_4,
 BeagleUsb2ComplexMatchState *state_5,
 BeagleUsb2ComplexMatchState *state_6,
 BeagleUsb2ComplexMatchState *state_7);

Configure the USB 2.0 complex matching system for triggering.

Arguments

beagle handle of a Beagle analyzer

validate validate a configuration state without actually programming
the Beagle analyzer

digout enable EXTOUT assertion through digital output pin 1 on
complex match

state_N data, timer and async match units corresponding to state N
(use null value for empty states)

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

* See Section 6.8.5.9. Identical error codes are used.

Details

This function is used to configure the USB 2.0 complex matching system. This
function is supported only for analyzers with on-board triggering capability and
licensed for USB 2.0 Complex triggering.

The BeagleUsb2ComplexMatchState fields should be used to form a valid
complex matching state machine. The default state, state_0, is the entry point of
the state machine.

 /* Complex match state configuration */
 struct BeagleUsb2ComplexMatchState {
 u08 data_0_valid;
 BeagleUsb2DataMatchUnit data_0;
 u08 data_1_valid;
 BeagleUsb2DataMatchUnit data_1; u
 08 data_2_valid;
 BeagleUsb2DataMatchUnit data_2;
 u08 data_3_valid;
 BeagleUsb2DataMatchUnit data_3;
 u08 timer_valid;
 BeagleUsb2TimerMatchUnit timer;

Beagle Protocol Analyzer User Manual

156

 u08 a sync_valid;
 BeagleUsb2AsyncEventMatchUnit async;
 u08 goto_0;
 u08 goto_1;
 u08 goto_2;
 };

Up to 3 destination states can be defined per state. These states should be set
using the goto_N fields. Match units can pick one of these 3 destination states
using their goto_selector (0, 1, or 2) fields.

Each state can accomodate up to 4 data match units, 1 timer match unit, and 1
asynchronous event match unit. To denote a valid match unit object, the
corresponding *_valid field should contain a non-zero value.

Data Match Units

The BeagleUsb2DataMatchUnit should be used to create a data match unit. The
fields are described in Table 47 and Table 68.

 /*Data match unit configuration*/
 struct BeagleUsb2DataMatchUnit {
 BeagleUsb2PacketType packet_type;
 BeagleUsb2DataMatchPrefix prefix;
 u08 handshake;
 u16 data_length;
 u08 * data;
 u16 data_valid_length;
 u08 * data_valid;
 BeagleUsb2ErrorType err_match;
 08 data_properties_valid;
 BeagleUsb2DataProperties data_properties;
 BeagleUsb2MatchModifier match_modifier;
 u16 repeat_count;
 u08 sticky_action;
 08 action_mask;
 u08 goto_selector;
 };

Table 47 : BeagleUsb2DataMatchUnit field descriptions

packet_type The type of packet to be matched

Beagle Protocol Analyzer User Manual

157

prefix The PID that should appear before the
packet type

handshake Mask of handshakes that should follow the
packet type

data_length Length of the data array

data Byte array of data on which to match

data_valid_length Length of the data valid array

data_valid Array specifying which bytes in the data
array are valid (non-zero) and which are
dont cares (zero)

err_match Dictates which CRC/error conditions must
be valid or invalid for a match. Options are
listed in Table 51

data_properties_valid data_properties is valid

data_properties Specific match information for supplied data

match_modifier Modify the matching criteria

The BeagleUsb2PacketType enumerated type is used in data match units to
denote which type of packet is to be matched. The different enumerated types are
described in the Table 48.

Table 48 : BeagleUsb2PacketType enumerated values

BG_USB2_MATCH_PACKET_IN Match on IN packets

BG_USB2_MATCH_PACKET_OUT Match on OUT packets

BG_USB2_MATCH_PACKET_SETUP Match on SETUP
packets

BG_USB2_MATCH_PACKET_SOF Match on SOF packets

BG_USB2_MATCH_PACKET_DATA0 Match on DATA0
packets

BG_USB2_MATCH_PACKET_DATA1 Match on DATA1
packets

BG_USB2_MATCH_PACKET_DATA2 Match on DATA2
packets

BG_USB2_MATCH_PACKET_MDATA Match on MDATA
packets

BG_USB2_MATCH_PACKET_ACK Match on ACK packets

BG_USB2_MATCH_PACKET_NAK Match on NAK packets

Beagle Protocol Analyzer User Manual

158

BG_USB2_MATCH_PACKET_STALL Match on STALL
packets

BG_USB2_MATCH_PACKET_NYET Match on NYET packets

BG_USB2_MATCH_PACKET_PRE Match on PRE packets

BG_USB2_MATCH_PACKET_ERR Match on ERR packets

BG_USB2_MATCH_PACKET_SPLIT Match on SPLIT packets

BG_USB2_MATCH_PACKET_EXT Match on EXT packets

BG_USB2_MATCH_PACKET_ANY Match on ANY packets

BG_USB2_MATCH_PACKET_DATA0_DATA1 Match on DATA0 or
DATA1 packets

BG_USB2_MATCH_PACKET_DATAX Match on DATA0,
DATA1, DATA2, or
MDATA packets

BG_USB2_MATCH_PACKET_SUBPID_MASK Mask a standard packet
type with this to mark it
as a SubPID

BG_USB2_MATCH_PACKET_ERROR Match on various error
types

The BeagleUsb2DataMatchPrefix enumerated type is used in data match units
to denote what type of PID should precede the desired packet type. This feature is
not valid for ERROR types. The different enumerated types are described in the
Table 49.

Table 49 : BeagleUsb2DataMatchPrefix enumerated values

BG_USB2_MATCH_PREFIX_DISABLED

BG_USB2_MATCH_PREFIX_IN

BG_USB2_MATCH_PREFIX_OUT

BG_USB2_MATCH_PREFIX_SETUP

BG_USB2_MATCH_PREFIX_CSPLIT

BG_USB2_MATCH_PREFIX_CSPLIT_IN

BG_USB2_MATCH_PREFIX_SSPLIT_OUT

BG_USB2_MATCH_PREFIX_SSPLIT_SETUP

The handshake parameter takes a bitmask of available packet handshake
parameters. This feature is not available for ERROR packet types. The available
handshake options are described in Table 50.

Beagle Protocol Analyzer User Manual

159

Table 50 : BeagleUsb2DataMatchUnit handshake bitmask values

BG_USB2_MATCH_HANDSHAKE_MASK_DISABLED

BG_USB2_MATCH_HANDSHAKE_MASK_NONE

BG_USB2_MATCH_HANDSHAKE_MASK_ACK

BG_USB2_MATCH_HANDSHAKE_MASK_NAK

BG_USB2_MATCH_HANDSHAKE_MASK_NYET

BG_USB2_MATCH_HANDSHAKE_MASK_STALL

The BeagleUsb2ErrorType enumerated type is used differently depending on the
match packet type that is configured. In situations where the packet type is not
configured to ERROR this field defines the type of CRC condition which is intended to
be matched. The various options include looking for failing and passing CRC
conditions.

When the match packet type is ERROR, the BeagleUsb2ErrorType value is
actually used as a bitmask to test for various errors. The possible errors to test for
are CRC errors, corrupted PIDs, jabber, and general PHY receive errors. By
masking these bits together on an ERROR packet type, multiple error conditions can
be matched with a single match unit.

Table 51 : BeagleUsb2ErrorType enumerated values

When not using ERROR

BG_USB2_MATCH_CRC_DONT_CARE CRC may be valid or fail

BG_USB2_MATCH_CRC_VALID CRC must be valid

BG_USB2_MATCH_CRC_INVALID CRC must invalid

When using ERROR

BG_USB2_MATCH_ERR_MASK_CORRUPTED_PID Any corrupted PID

BG_USB2_MATCH_ERR_MASK_CRC Any CRC failure

BG_USB2_MATCH_ERR_MASK_RXERROR Any PHY RxError

BG_USB2_MATCH_ERR_MASK_JABBER Any jabber error

Jabber is matched by a high-speed packet being greater than 1027 bytes, a full-
speed packet being greater than 1026 bytes, and a low-speed packet being greater
than 11 bytes. These lengths include the PID and CRC.

 /*Data properties configuration*/
 struct BeagleUsb2DataProperties {
 BeagleUsb2DataMatchDirection direction;
 BeagleUsbMatchType ep_match_type;

Beagle Protocol Analyzer User Manual

160

 u08 ep_match_val;
 BeagleUsbMatchType dev_match_type;
 u08 dev_match_val;
 BeagleUsbMatchType data_len_match_type;
 u16 data_len_match_val;
 };

The BeagleUsb2DataMatchDirection is used to indicate the direction of the
USB packet. This is similar in nature to the prefix option but gives a broader sense
of direction. For example, the IN direction would match all packets that are coming
into the host, including SSPLIT+IN or CSPLIT+IN. The available direction options
are described in Table 52.

Table 52 : BeagleUsb2DataMatchDirection enumerated values

BG_USB2_MATCH_DIRECTION_DISABLED Disable direction
matching

BG_USB2_MATCH_DIRECTION_IN Match packets
going into the host

BG_USB2_MATCH_DIRECTION_OUT_SETUP Match packets
going out of the
host

BG_USB2_MATCH_DIRECTION_SETUP Match SETUP
packets going out
of the host

The BeagleUsbMatchType is described in Section 6.8.

The match_modifier gives the ability to modify the polarity of the matching
conditions. The available match modifiers are described in Table 53. In each case,
PID describes the matching of packet_type, as well as prefix and handshake.
If any feature is disabled (i.e. the data_length or data_properties_valid is
0), then that part of the match will always evaluate to true, and then be modified by
the match_modifier.

Table 53 : BeagleUsb2DataMatchModifier enumerated values

BG_USB2_MATCH_MODIFIER_0 PID & Pattern & Data Property

BG_USB2_MATCH_MODIFIER_1 PID & !(Pattern & Data Property)

BG_USB2_MATCH_MODIFIER_2 !(PID & Pattern & Data Property)

BG_USB2_MATCH_MODIFIER_3 PID & !Pattern & Data Property

Resource Limitations

Beagle Protocol Analyzer User Manual

161

Due to internal optimizations and constraints, certain resource limitations apply to
data match units. The total data memory space (shared across all states) available
is 4096 bytes. The maximum allowable length of any data array in a single data
match unit is 1024 (bytes).

In addition, some features of the complex match/action system are multiplexed with
the simple mode features. These resource limitations affect the following items:

• Output Pin 1

• Output Pin 4 pattern matching

When the complex match system is enabled it will override the Output Pin 1 setting
as configured in the usb2_digital_out functions. Instead, the configuration as
defined by the bg_usb2_extout_config and
bg_usb2_complex_match_config functions are used. Any assertions of the
external output by the match/action system are done through Output Pin 1.

When the complex match system is enabled it will disable the ability for Output Pin 4
to match on specific patterns. It will still have the ability to match on PID, device, and
endpoints, including the ability to match on various DATA PID types.

If the complex match system is disabled, these features will automatically revert to
the latest simple mode configured option. Note that simple mode configurations can
be updated even when the complex match system is enabled; they just wont be
applied until the complex match system is disabled.

Timer Match Units

The BeagleUsb2TimerMatchUnit should be used to create a timer match unit.

 /*Timer match unit configuration*/
 struct BeagleUsb2TimerMatchUnit {
 BeagleUsbTimerUnit timer_unit;
 u32 timer_val;
 u08 action_mask;
 u08 goto_selector;
 };

The BeagleUsbTimerUnit enumerated type is used to define the unit of time for
the timer_val field. The different enumerated types are described in Table 67.

Beagle Protocol Analyzer User Manual

162

The validity of timer_val depends on the selected units. The timer must be at
least 16 ns and at most 71 sec.

Asynchronous Event Match Units

The BeagleUsb2AsyncEventMatchUnit should be used to create an
asynchronous event match unit.

 /*Async match unit configuration*/
 struct BeagleUsb2AsyncEventMatchUnit {
 BeagleUsb2AsyncEventType event_type;
 u08 edge_mask;
 u16 repeat_count;
 u08 sticky_action;
 u08 action_mask;
 u08 goto_selector;
 BeagleUsb2VbusTriggerType vbus_trigger_type;
 f32 vbus_trigger_val;
 };

The BeagleUsb2AsyncEventType enumerated type is used to define the event
type to match on. The different enumerated types are listed below. Restrictions on
edge_mask are based on the selected event_type and are indicated by
footnotes.

• BG_USB2_COMPLEX_MATCH_EVENT_DIGIN1

• BG_USB2_COMPLEX_MATCH_EVENT_DIGIN2

• BG_USB2_COMPLEX_MATCH_EVENT_DIGIN3

• BG_USB2_COMPLEX_MATCH_EVENT_DIGIN4

• BG_USB2_COMPLEX_MATCH_EVENT_CHIRP (2)

• BG_USB2_COMPLEX_MATCH_EVENT_SMA_EXTIN

• BG_USB2_COMPLEX_MATCH_EVENT_CROSS_TRIGGER (3)

• BG_USB2_COMPLEX_MATCH_EVENT_VBUS_TRIGGER

The edge_mask field is a bitmask that specifies the event edge(s) on which to
trigger. Zero or more of the following constants may be used.

• BG_USB_EDGE_RISING

Beagle Protocol Analyzer User Manual

163

• BG_USB_EDGE_PULSE

• BG_USB_EDGE_FALLING

The following constants may be used for EVENT_CHIRP.

• BG_USB_EDGE_DEVICE_CHIRP

• BG_USB_EDGE_HOST_CHIRP

(2) Bits BG_USB_EDGE_DEVICE_CHIRP and BG_USB_EDGE_HOST_CHIRP are
mutually exclusive. Only one of these bits should be set in the event edge_mask

(3) Only bit BG_USB_EDGE_PULSE should be set in the event edge_mask

The BeagleUsb2VbusTriggerType enumerated type is used to define the V
trigger type to match on. The different enumerated types are listed below. Note that
the vbus_trigger_type and vbus_trigger_val fields are valid only when the
event_type field is BG_USB2_COMPLEX_MATCH_EVENT_VBUS_TRIGGER.

• BG_USB2_VBUS_TRIGGER_TYPE_CURRENT

• BG_USB2_VBUS_TRIGGER_TYPE_VOLTAGE

vbus_trigger_val is a float value that specifies the threshold. Valid values range
from 0 to 24V for BG_USB2_VBUS_TRIGGER_TYPE_VOLTAGE and -3A to 3A for
BG_USB2_VBUS_TRIGGER_TYPE_CURRENT.

V trigger is currently avaiable for the Beagle 480 Power Protocol Analyzer,
Ultimate Edition only. Capture must be configured with current/voltage monitoring
enabled by calling bg_usb_configure() with BG_USB_CAPTURE_USB2|
BG_USB_CAPTURE_IV_MON_LITE. Only a single threshold (voltage or current) is
supported. BG_COMPLEX_CONFIG_ERROR_NO_MULTI_VBUS_TRIGGERS will be
returned if the API is called with multiple states containing different V trigger
types or thresholds. For a rising edge trigger (V voltage or current) the specified
threshold must be at or above the initial condition. If this is not the case, a multi-
state trigger can be used. The first state is to set a falling edge trigger, followed by a
rising edge trigger both at the desired threshold.

Match Actions

For a description of the actions available for match units, see Table 68 for more
details.

Beagle Protocol Analyzer User Manual

BUS

BUS

BUS

BUS

164

Configure Matching (bg_usb2_complex_match_config_single)

 int bg_usb2_complex_match_config_single (
 Beagle beagle,
 u08 validate,
 u08 digout,
 BeagleUsb2ComplexMatchState *state);

Configure the USB 2.0 complex matching system for triggering.

Arguments

beagle handle of a Beagle analyzer

validate validate a configuration state without actually
programming the Beagle analyzer

digout enable EXTOUT assertion through digital output pin 1 on
complex match

state data, timer and async match units corresponding to the
initial state

Details

Same as bg_usb2_complex_match_config, except that only one state can be
provided. This is a convenience function for users that can or want to only use one
state. This function will configure state 0, and clear all others.

See Section 6.8.4.11 for more details.

Enable Complex Matching (bg_usb2_complex_match_enable)

 int bg_usb2_complex_match_enable (Beagle beagle);

Enable the USB 2.0 complex matching system.

Arguments

beagle handle of a Beagle analyzer

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

BG_FUNCTION_NOT_AVAILABLE Function not supported by device.

Beagle Protocol Analyzer User Manual

165

Details

This function is supported only for analyzers with on-board triggering capability and
licensed for USB 2.0 Complex triggering.

Complex matching must first be configured before it can be enabled.

Disable Complex Matching (bg_usb2_complex_match_disable)

 int bg_usb2_complex_match_disable (Beagle beagle);

Disable the USB 2.0 complex matching system.

Arguments

beagle handle of a Beagle analyzer

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

BG_FUNCTION_NOT_AVAILABLE Function not supported by device.

Details

This function is supported only for analyzers with on-board triggering capability and
licensed for USB 2.0 Complex triggering.

Since complex matching only requires a single configuration, complex matching can
be re-enabled without reconfiguration after being disabled.

Query Capture Status (bg_usb2_capture_status)

 int bg_usb2_capture_status (
 Beagle beagle,
 BeagleCaptureStatus * status,
 u32 * pretrig_remaining,
 u32 * pretrig_total,
 u32 * capture_remaining,
 u32 * capture_total);

Query the status of USB 2.0 capture.

Arguments

Beagle Protocol Analyzer User Manual

166

beagle handle of a Beagle analyzer

status filled with enumerated value described in
Table 10

pretrig_remaining filled with amount of remaining pre-trigger
data to capture (in kB)

pretrig_total filled with pre-trigger size set by user
(in kB)

capture_remaining filled with amount of remaining total
capture data to capture (in kB)

capture_total filled with total capture size set by user
(in kB)

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

BG_USB2_NOT_ENABLED A USB 2.0 capture has not been enabled

Details

Query the capture status and the states of the pre-trigger and capture buffers.

Analyzers that do not have the on-board triggering capability will not return status
values indicating pre-trigger state. For these analyzers the returned
pretrig_total and pretrig_remaining will always be 0. The Beagle USB 12
and the Beagle USB 480 protocol analyzers will also return 0 for capture_total,
because neither analyzer has the ability to limit the total capture size.

The BG_CAPTURE_STATUS_POST_TRIGGER status indicates that data is being
captured post-trigger.

The Beagle USB 480 Protocol Analyzer has an on-board buffer, which when full will
cause the analyzer to stop capturing new data while allowing all of the previously
captured data to be downloaded. The BG_CAPTURE_STATUS_TRANSFER will
indicate that the capture has stopped because the buffer became *full*; previous
data is still available for download. capture_remaining (to be downloaded) will
return the amount currently in buffer.

For the Beagle USB 480 analyzer, this function can be useful for delayed-download
captures to poll the status of the buffer. However, calling this function issues a short
communication between the Beagle USB 480 analyzer and the analysis PC. If the
Beagle analyzer is on the same bus that it is monitoring, then calls to this function
will take up bus bandwidth and can take up on-board memory space due to the USB

Beagle Protocol Analyzer User Manual

167

broadcast architecture (see Section 1.1.2.1). If bus bandwidth is a concern, then
polling the buffer should be kept to a minimum. If polling is required, then it is
recommended that Self Filtering be enabled in order to eliminate the packets
intended for the Beagle analyzer, and thus save on-board memory.

For Beagle 12, only the status of BG_CAPTURE_STATUS_POST_TRIGGER can be
returned, indicating that the capture is running. Because there is no on-board buffer,
capture_remaining will always be 0.

Read USB 2.0 (bg_usb2_read)

 int bg_usb2_read (Beagle beagle,
 u32 * status,
 u32 * events,
 u64 * time_sop,
 u64 * time_duration,
 u32 * time_dataoffset,
 int max_bytes,
 u08 * packet);

Read USB 2.0 data from the USB port.

Arguments

common_args see bg_usb_read() for common arguments

Return Value

This function returns the number of bytes read or a negative value indicating an
error.

Specific Error Codes

BG_CONFIG_ERROR USB 3.0 capture is enabled.

BG_FUNCTION_NOT_AVAILABLE Beagle is not running a capture
or function not supported by
device.

BG_CAPTURE_NOT_TRIGGERED Capture has not been triggered
yet.

Details

Beagle Protocol Analyzer User Manual

168

This function is very similar to bg_usb_read in Section 6.8.3.6, but it will works
only with USB 2.0-only captures. If it is run with a USB 3.0-enabled capture, the
function will return an appropriate error code.

Read USB 2.0 with data-level timing (bg_usb2_read_data_timing)

 int bg_usb2_read_data_timing (Beagle beagle,
 u32 * status,
 u32 * events,
 u64 * time_sop,
 u64 * time_duration,
 u32 * time_dataoffset,
 int max_bytes,
 u08 * packet,
 int max_timing,
 u32 * data_timing);

Read USB 2.0 data from the USB port.

Arguments

common_args see bg_usb2_read() for common arguments

max_timing size of data_timing array

data_timing an allocated array of u32 which is filled with timing
data for each data-word read

Return Value

This function returns the number of bytes read or a negative value indicating an
error.

Specific Error Codes

BG_FUNCTION_NOT_AVAILABLE Function not supported by device.

Details

This function is supported only for the Beagle USB 12 Protocol Analyzer and is an
extension of the bg_usb2_read() function with the added feature of byte-level
timing. All of the bg_usb2_read() arguments and details apply.

The values in the data_timing array give the offset of the start of each data word
from time_sop. For USB, a data word is considered a single byte.

The data_timing array should be allocated at least as large as max_timing.

Beagle Protocol Analyzer User Manual

169

Read USB 2.0 with bit-level timing bg_usb2_read_bit_timing)

 int bg_usb2_read_bit_timing (Beagle beagle,
 u32 * status,
 u32 * events,
 u64 * time_sop,
 u64 * time_duration,
 u32 * time_dataoffset,
 int max_bytes,
 u08 * packet,
 int max_timing,
 u32 * bit_timing);

Read USB 2.0 data from the USB port.

Arguments

common_args see bg_usb2_read() for common arguments

max_timing size of bit_timing array

bit_timing an allocated array of u32 which is filled with the timing
data for each bit read

Return Value

This function returns the number of bytes read or a negative value indicating an
error.

Specific Error Codes

BG_FUNCTION_NOT_AVAILABLE Function not supported by device.

Details

This function is supported only for the Beagle USB 12 Protocol Analyzer and is an
extension of the bg_usb2_read() function with the added feature of bit-level
timing. All of the bg_usb2_read() arguments and details apply.

The values in the bit_timing array give the offset of each bit from time_sop.

Beagle Protocol Analyzer User Manual

170

The bit_timing array should be allocated at least as large as max_timing. Use
the function bg_bit_timing_size() (in Section 6.4.3.4) to determine how large
an array to allocate for bit_timing.

Reconstruct Bit Timing (bg_usb2_reconstruct_timing)

 int bg_usb2_reconstruct_timing (u32 target_config,
 int num_bytes,
 u08 * packet,
 int max_timing,
 u32 * bit_timing);

Reconstruct the bit-level timing of a packet.

Arguments

target_config the bus speed of the packet

num_bytes number of bytes to do the reconstruction on

packet an array containing the packet bytes

max_timing maximum number of bits to do the reconstruction
on

bit_timing allocated array of u32 which is filled with the
duration of each of the bits

Return Value

A Beagle status code of BG_OK is returned on success or an error code as detailed
in Table 74.

Specific Error Codes

None.

Details

All Beagle analyzers except for the Beagle USB 12 analyzer are restricted to
packet-level timing of the capture data. However, this function provides a bit-level
timing reconstruction based upon the data and the speed of the bus.

The bit_timing array will be filled with the duration of each of the bits in the
packet array. The duration of each bit is provided in counts of a 480 MHz clock,
corresponding to approximately a 2 ns resolution. Those bits that are followed by a
bit-stuff will have a duration that is twice as long as a normal bit time for that speed.

Beagle Protocol Analyzer User Manual

171

The bit_timing array should be allocated at least as large as max_timing. Use
the function bg_bit_timing_size() (in Section 6.4.3.4) to determine how large
an array to allocate for bit_timing.

Read USB 2.0 Statistics Counts (bg_usb2_stats_read)

 int bg_usb2_stats_read (Beagle beagle,
 BeagleUsb2Stats * config);

Read hardware-based USB 2.0 statistics counts.

Arguments

beagle handle of a Beagle analyzer

stats filled with the hardware-based statistics counts

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

BG_CONFIG_ERROR USB 2.0 capture is not enabled
or USB 3.0 capture is enabled.

BG_FUNCTION_NOT_AVAILABLE Function not supported by
device.

Details

This function is very similar to bg_usb_stats_read in Section 6.8.3.10, but it will
works only with USB 2.0-only captures. If it is run with a USB 3.0-enabled capture,
the function will return an appropriate error code.

Test Memory (bg_usb2_memory_test)

 int bg_usb2_memory_test (Beagle beagle);

Test the USB 2.0 capture buffer hardware.

Arguments

beagle handle of a Beagle analyzer

Return Value

Beagle Protocol Analyzer User Manual

172

This function returns a memory test result listed in Table 54 or a negative value
indicating an error.

Table 54 : USB Memory Test Results

BG_USB_MEMORY_TEST_PASS Memory test passed

BG_USB_MEMORY_TEST_FAIL Memory test failed

Specific Error Codes

None.

Details

This function is not supported for the Beagle USB 12 and the Beagle USB 480
Protocol Analyzers.

This function is used to verify that the USB 2.0 capture buffer hardware is
functioning properly. Please contact Total Phase if this function ever returns
BG_USB_MEMORY_TEST_FAIL.

6.8.5 USB Monitor Interface (USB 3.0)

Configure PHY (bg_usb3_phy_config)

 int bg_usb3_phy_config (Beagle beagle,
 u08 tx,
 u08 rx);

Configure USB 3.0 PHY settings.

Arguments

beagle handle of a Beagle analyzer

tx bitmask of PHY settings for Tx channel

rx bitmask of PHY settings for Rx channel

Table 55 : BG_USB3_PHY_CONFIG Bitmasks

*_POLARITY_NON_INVERT Force polarity to non-invert

Beagle Protocol Analyzer User Manual

173

*_POLARITY_INVERT Force polarity to invert

*_POLARITY_AUTO Auto-detect polarity

*_DESCRAMBLER_ON Force descrambler on

*_DESCRAMBLER_OFF Force descrambler off

*_DESCRAMBLER_AUTO Auto-detect descrambler settings

*_RXTERM_ON Force SuperSpeed Rx termination on

*_RXTERM_OFF Force SuperSpeed Rx termination off

*_RXTERM_AUTO Auto-detect Rx termination

* – all entries in table are prefixed with BG_USB3_PHY_CONFIG

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

BG_FUNCTION_NOT_AVAILABLE An attempt was made to call
this function with an invalid
Beagle product.

Details

This function is used to control the PHY settings of the Beagle USB analyzer. By
default, the analyzer will auto-detect the polarity settings, descrambler settings, and
SuperSpeed termination of the target host and device.

The PHY settings can be forced into an alternate configuration by calling this
function with the proper bitmask. For example, a SuperSpeed device can be forced
to operate at high-speed USB by using the following bitmask:

 BG_USB3_PHY_CONFIG_POLARITY_AUTO |
 BG_USB3_PHY_CONFIG_DESCRAMBLER_AUTO |
 BG_USB3_PHY_CONFIG_RXTERM_OFF

Configure Link (bg_usb3_link_config)

 int bg_usb3_link_config (
 Beagle beagle,
 const BeagleUsb3Channel * tx,

Beagle Protocol Analyzer User Manual

174

 const BeagleUsb3Channel * rx);

Configure front-end settings of USB 3.0 link.

Arguments

beagle handle of a Beagle analyzer

tx buffer which contains Tx channel configuration

rx buffer which contains Rx channel configuration

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

BG_CONFIG_ERROR An attempt was made to
configure the Beagle with
invalid settings.

BG_FUNCTION_NOT_AVAILABLE An attempt was made to call
this function with an invalid
Beagle product.

Details

For the convenience of the user, it is possible to modify the receiver and transmitter
settings of the active buffer circuitry.

On the receiver side, users are able to modify the receiver equalization settings,
though often this is not necessary.

On the transmitter side, users are able to adjust the signal level of the output. By
configuring the levels sent by the transmitter, it is possible to test the sensitivity of
the receiver of the USB 3.0 device. The characteristics of the transmitter can also be
modified by changing the output pre-emphasis.

Setting for each channel are provided to this function through a
BeagleUsb3Channel structure, as described below:

 /* Channel Configuration */
 struct BeagleUsb3Channel {
 u08 input_equalization_short;
 u08 input_equalization_medium;
 u08 input_equalization_long;
 u08 pre_emphasis_short_level;
 u08 pre_emphasis_short_decay;

Beagle Protocol Analyzer User Manual

175

 u08 pre_emphasis_long_level;
 u08 pre_emphasis_long_decay;
 u08 output_level;
 };

Input equalization can be used to improve the detection of SuperSpeed USB
signals which have been degraded from traveling through lossy media. Three time
constants (short, medium, and long) may be configured independently using the
enumerated values listed in Table 56.

Table 56 : Input equalization enumerated values

BG_USB3_EQUALIZATION_OFF Filtering off

BG_USB3_EQUALIZATION_MIN Minimum filtering

BG_USB3_EQUALIZATION_MOD Moderate filtering

BG_USB3_EQUALIZATION_MAX Maximum filtering

Output pre-emphasis modifies the SuperSpeed signals output by the Beagle USB
analyzer to compensate for the effects of transmission through lossy media. Short
pre-emphasis compenstates for transmission through small impedance
discontinuities. Long pre-emphasis compenstates for signals which will travel
through a long transmission line. Please see below for more details on these struct
elements.

• pre_emphasis_short_level value may be between 0 and 15,
corresponding to a pre-emphasis long level range of 0 dB to 6 dB.

• pre_emphasis_short_decay value may be between 0 and 7, corresponding
to a pre-emphasis decay range of 500 ps to 1500 ps.

• pre_emphasis_long_level value may be between 0 and 15, corresponding
to a pre-emphasis long level range of 0 dB to 6 dB.

• pre_emphasis_long_decay value may be between 0 and 7, corresponding
to a pre-emphasis decay range of 500 ps to 1500 ps.

The output level of the SuperSpeed signals can be configured to have a differential
peak-to-peak voltage between 405 mV to 990 mV by setting output_level to a
value between 2 (low) and 13 (high).

Beagle Protocol Analyzer User Manual

176

The sum of output_level and all the pre_emphasis_* settings may not
exceed 15.

Configure Capture (bg_usb3_capture_buffer_config)

 int bg_usb3_capture_buffer_config (Beagle beagle,
 u32 pretrig_kb,
 u32 capture_kb);

Configure USB 3.0 hardware capture buffer.

Arguments

beagle handle of a Beagle analyzer

pretrig_kb amount (in kB) of pre-trigger data to capture

capture_kb total amount (in kB) of data to capture

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

BG_CONFIG_ERROR An attempt was made to set an invalid configuration.

Details

The USB 3.0 hardware buffer is 2 GB for standard units and 4 GB for units with an
option B upgrade, so capture_kb may have a maximum value of 2,097,152 for
standard units or 4,194,304 for option B units.

The size of capture_kb includes pretrig_kb. Attempting to set pretrig_kb
greater than capture_kb will return an error.

To run an infinite capture, set capture_kb to
BG_USB_CAPTURE_SIZE_INFINITE.

Query Capture Config (bg_usb3_capture_buffer_config_query)

 int bg_usb3_capture_buffer_config_query (Beagle beagle,
 u32 * pretrig_kb,
 u32 * capture_kb);

Query the current USB 3.0 hardware capture buffer configuration.

Beagle Protocol Analyzer User Manual

177

Arguments

beagle handle of a Beagle analyzer

pretrig_kb filled with USB 3.0 pre-trigger size

capture_kb filled with USB 3.0 total capture size

Return Value

This function returns the size of the USB 3.0 memory, as shown in Table 57.

Table 57 : USB 3.0 memory size constants

BG_USB3_BUFFER_SIZE_2GB 2GB buffer size

BG_USB3_BUFFER_SIZE_4GB 4GB buffer size

Specific Error Codes

None.

Details

Very similar to bg_usb2_capture_buffer_config_query. See Section 6.8.4.3
for more details.

Query Capture Status (bg_usb3_capture_status)

int bg_usb3_capture_status (
 Beagle beagle,
 u32 timeout_ms,
 BeagleCaptureStatus * status,
 u32 * pretrig_remaining,
 u32 * pretrig_total,
 u32 * capture_remaining,
 u32 * capture_total);

Query the status of USB 3.0 capture.

Arguments

BG_USB3_NOT_ENABLED A USB 3.0 capture has not been enabled

Return Value

Input arguments are the same as bg_usb2_capture_status. See Section
6.8.4.15 for details.

Beagle Protocol Analyzer User Manual

178

Capture Data Truncation (bg_usb3_truncation_mode)

 int bg_usb3_truncation_mode (
 Beagle beagle,
 u08 tx_truncation_mode,
 u08 rx_truncation_mode);

Configure the capture truncation mode.

Arguments

beagle handle of a Beagle analzyer

tx_truncation_mode truncation mode of the host transmission
stream (see Table 58)

rx_truncation_mode truncation mode of the host reception
stream (see Table 58)

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

None.

Details

This function allows users to set a maximum length for the amount of saved data for
each packet on a given stream. This truncation is applied before data is written into
the hardware memory buffer, and can thus be useful in applications that wish to
minimize memory usage on the analyzer and on the analysis computer.

The truncation mode of each stream can be set to 20 symbols, 36 symbols,
68 symbols, or off. These truncation lengths include the packet framing (4 symbols),
and thus provide a means for capturing 16 symbols, 32 symbols, or 64 symbols
after the packet framing.

The return value of bg_usb_read() will still return the true length of the packet on
the bus. If a packet is truncated, the read function will set the
BG_USB_TRUNCATION_MODE flag in the status field. The number of bytes actually
available for inspection will be set in the status field as well, and can be found by
masking the status with BG_USB_TRUNCATION_LEN_MASK.

Even if truncation is enabled, USB 3.0 match units will still be able to test against
the full length of the packet.

Beagle Protocol Analyzer User Manual

179

Table 58 : USB 3.0 truncation modes

BG_USB3_TRUNCATION_OFF Disable truncation

BG_USB3_TRUNCATION_20 Truncate to 20 symbols

BG_USB3_TRUNCATION_36 Truncate to 36 symbols

BG_USB3_TRUNCATION_68 Truncate to 68 symbols

Enable External I/O (bg_usb3_ext_io_config)

 int bg_usb3_ext_io_config (
 Beagle beagle,
 bool extin_enable,
 BeagleUsbExtoutType extout_modulation);

Enable the SMA External Inputs / Outputs.

Arguments

beagle handle of a Beagle analyzer

extin_enable a non-zero value enables EXTIN
monitoring and matching

extout_modulation mode of EXTOUT signal modulation

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

BG_CONFIG_ERROR An attempt was made to set an invalid configuration.

Details

The BeagleUsbExtoutType enumerated type is used to set the mode of EXTOUT
signal modulation. The different enumerated types are described in the table below.

Table 59 : BeagleUsbExtoutType enumerated values

BG_USB_EXTOUT_LOW Tie LOW (default)

BG_USB_EXTOUT_HIGH Tie HIGH

BG_USB_EXTOUT_POS_PULSE Positive pulse

BG_USB_EXTOUT_NEG_PULSE Negative pulse

BG_USB_EXTOUT_TOGGLE_0 Toggle (initial value LOW)

BG_USB_EXTOUT_TOGGLE_1 Toggle (initial value HIGH)

Beagle Protocol Analyzer User Manual

180

Enable Simple Matching (bg_usb3_simple_match_config)

 bg_usb3_simple_match_config (
 Beagle beagle,
 u32 trigger_mask,
 u32 extout_mask,
 BeagleUsb3ExtoutMode extout_mode
 u08 extin_edge_mask,
 BeagleUsb3IPSType tx_ips_type,
 BeagleUsb3IPSType rx_ips_type);

Enable the USB 3 simple matching system for triggering.

Arguments

beagle handle of a Beagle analyzer

trigger_mask bitmask of events / sources that will be used
for triggering capture

extout_mask bitmask of events / sources that will be used
for controlling EXTOUT

extout_mode mode of EXTOUT assertion

extin_edge_mask bitmask of EXTIN edge(s) to match on

tx_ips_type mode of downstream IPS matching

rx_ips_type mode of upstream IPS matching

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

BG_CONFIG_ERROR An attempt was made to set an invalid configuration.

Details

The trigger_mask and extout_mask bitmask fields use the same set of
constants. Zero or more of the following constants may be used in each of the two
fields.

• BG_USB3_SIMPLE_MATCH_NONE

• BG_USB3_SIMPLE_MATCH_SSTX_IPS

• BG_USB3_SIMPLE_MATCH_SSTX_SLC

• BG_USB3_SIMPLE_MATCH_SSTX_SHP

Beagle Protocol Analyzer User Manual

181

• BG_USB3_SIMPLE_MATCH_SSTX_SDP

• BG_USB3_SIMPLE_MATCH_SSRX_IPS

• BG_USB3_SIMPLE_MATCH_SSRX_SLC

• BG_USB3_SIMPLE_MATCH_SSRX_SHP

• BG_USB3_SIMPLE_MATCH_SSRX_SDP

• BG_USB3_SIMPLE_MATCH_SSTX_SLC_CRC_5A_CRC_5B

• BG_USB3_SIMPLE_MATCH_SSTX_SHP_CRC_5

• BG_USB3_SIMPLE_MATCH_SSTX_SHP_CRC_16

• BG_USB3_SIMPLE_MATCH_SSTX_SDP_CRC

• BG_USB3_SIMPLE_MATCH_SSTX_SLC_SLC_CRC

• BG_USB3_SIMPLE_MATCH_SSRX_SLC_CRC_5A_CRC_5B

• BG_USB3_SIMPLE_MATCH_SSRX_SHP_CRC_5

• BG_USB3_SIMPLE_MATCH_SSRX_SHP_CRC_16

• BG_USB3_SIMPLE_MATCH_SSRX_SDP_CRC

• BG_USB3_SIMPLE_MATCH_SSRX_SLC_SLC_CRC

• BG_USB3_SIMPLE_MATCH_EVENT_SSTX_LFPS

• BG_USB3_SIMPLE_MATCH_EVENT_SSTX_POLARITY

• BG_USB3_SIMPLE_MATCH_EVENT_SSTX_DETECTED

• BG_USB3_SIMPLE_MATCH_EVENT_SSTX_SCRAMBL

• BG_USB3_SIMPLE_MATCH_EVENT_SSRX_LFPS

• BG_USB3_SIMPLE_MATCH_EVENT_SSRX_POLARITY

• BG_USB3_SIMPLE_MATCH_EVENT_SSRX_DETECTED

• BG_USB3_SIMPLE_MATCH_EVENT_SSRX_SCRAMBL

• BG_USB3_SIMPLE_MATCH_EVENT_VBUS_PRESENT

• BG_USB3_SIMPLE_MATCH_EVENT_SSTX_PHYERR

• BG_USB3_SIMPLE_MATCH_EVENT_SSRX_PHYERR

• BG_USB3_SIMPLE_MATCH_EVENT_SMA_EXTIN

Beagle Protocol Analyzer User Manual

182

The BeagleUsb3ExtoutMode enumerated type is used to set the mode of
EXTOUT operation. The different enumerated types are described in Table 60.

Table 60 : BeagleUsb3ExtoutMode enumerated values

BG_USB3_EXTOUT_DISABLED EXTOUT is disabled

BG_USB3_EXTOUT_TRIGGER_MODE EXTOUT only when capture
triggers

BG_USB3_EXTOUT_EVENTS_MODE EXTOUT on every
extout_mask source match

The extin_edge_mask bitmask specifies the EXTIN edge(s) that will cause a
match. Zero or more of the follow constants may be used.

• BG_USB_EDGE_RISING

• BG_USB_EDGE_FALLING

The BeagleUsb3IPSType enumerated type is used to specify the IPS type that will
cause a match to occur if one of the IPS sources is enabled in trigger_mask or
extout_mask. The different enumerated types are described in Table 61.

Table 61 : BeagleUsb3IPSType enumerated values

BG_USB3_IPS_TYPE_DISABLED IPS matching disabled

BG_USB3_IPS_TYPE_TS1 Match only on TS1

BG_USB3_IPS_TYPE_TS2 Match only on TS2

BG_USB3_IPS_TYPE_TSEQ Match only on TSEQ

BG_USB3_IPS_TYPE_TSx Match on TS1 or TS2

BG_USB3_IPS_TYPE_TS_ANY Match on TS1, TS2 or TSEQ

Configure Complex Matching (bg_usb3_complex_match_config)

 int bg_usb3_complex_match_config (
 Beagle beagle,
 u08 validate,
 u08 extout,
 BeagleUsb3ComplexMatchState *state_0,
 BeagleUsb3ComplexMatchState *state_1,
 BeagleUsb3ComplexMatchState *state_2,
 BeagleUsb3ComplexMatchState *state_3,
 BeagleUsb3ComplexMatchState *state_4,

Beagle Protocol Analyzer User Manual

183

 BeagleUsb3ComplexMatchState *state_5,
 BeagleUsb3ComplexMatchState *state_6,
 BeagleUsb3ComplexMatchState *state_7);

Configure the USB 3.0 complex matching system for triggering.

Arguments

beagle handle of a Beagle analyzer

validate validate a configuration state without actually programming
the Beagle analyzer

extout enable EXTOUT assertion on complex match

state_N data, timer and async match units corresponding to state N
(use null value for empty states)

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

* All of the following error codes are prefixed by
BG_COMPLEX_CONFIG_ERROR (e.g. Eg:
BG_COMPLEX_CONFIG_ERROR_NO_STATES

*_NO_STATES No valid BeagleUsb3ComplexMatchState
was supplied.

*_DATA_PACKET_TYPE A BeagleUsb3PacketType value is invalid.

*_DATA_FIELD A data_length field does not match its
data_valid_length.

*_ERR_MATCH_FIELD The err_match field was populated incorrectly.

*_DATA_RESOURCES Insufficient data resources to satisfy
configuration.

*_DP_MATCH_TYPE A BeagleUsbMatchType value is invalid.

*_DP_MATCH_VAL A source_match_val field is invalid.

*_DP_REQUIRED A required BeagleUsb3DataProperties
object was not supplied for a
BG_USB3_MATCH_PACKET_SHP_SDP
packet_type.

*_DP_RESOURCES Insufficient data properties resources to satisfy
configuration.

*_TIMER_UNIT A BeagleUsb3TimerUnit value is invalid.

*_TIMER_BOUNDS A timer value is out of the allowable range.

*_ASYNC_EVENT A BeagleUsb3AsyncEventType value is
invalid.

Beagle Protocol Analyzer User Manual

184

*_ASYNC_EDGE A edge_mask field is invalid.

*_ACTION_FILTER A ACTION_FILTER action is being applied to a
match unit that is not supported, such as: timer
units, asynchronous event units, and ERR packet
types.

*_ACTION_GOTO_SEL A goto_selector field is invalid.

*_ACTION_GOTO_DEST A BG_USB_COMPLEX_MATCH_ACTION_GOTO
action is being used with an invalid goto_N
destination state number.

*_BAD_VBUS_TRIGGER_TYPE A vbus_trigger_type field is invalid.

*_BAD_VBUS_TRIGGER_THRES A vbus_trigger_val field is out of the valid
range.

*_NO_MULTI_VBUS_TRIGGERS Only one V trigger threshold is allowed
across the states.

*_IV_MONITOR_NOT_ENABLED V trigger is set without enabling current/
voltage monitoring. bg_usb_configure()
must be called with BG_USB_CAPTURE_USB2|
BG_USB_CAPTURE_IV_MON_LITE prior to this
call.

Details

This function is used to configure the USB 3.0 complex matching system on the
Beagle USB analyzer.

The BeagleUsb3ComplexMatchState fields should be used to form a valid
complex matching state machine. The default state, state_0, is the entry point of
the state machine.

 /* Complex match state configuration */
struct BeagleUsb3ComplexMatchState {
 u08 tx_data_0_valid;
 BeagleUsb3DataMatchUnit tx_data_0;
 u08 tx_data_1_valid;
 BeagleUsb3DataMatchUnit tx_data_1;
 u08 tx_data_2_valid;
 BeagleUsb3DataMatchUnit tx_data_2;
 u08 rx_data_0_valid;
 BeagleUsb3DataMatchUnit rx_data_0;
 u08 rx_data_1_valid;
 BeagleUsb3DataMatchUnit rx_data_1;
 u08 rx_data_2_valid;
 BeagleUsb3DataMatchUnit rx_data_2;
 u08 timer_valid;

Beagle Protocol Analyzer User Manual

BUS

BUS

185

 BeagleUsb3TimerMatchUnit timer;
 u08 async_valid;
 BeagleUsb3AsyncEventMatchUnit async;
 u08 goto_0;
 u08 goto_1;
 u08 goto_2;
};

Up to 3 destination states can be defined per state. These states should be set
using the goto_N fields. Match units can pick one of these 3 destination states
using their goto_selector (0, 1, or 2) fields.

Each state can accomodate up to 3 TX data match units, 3 RX data match units, 1
timer match unit, and 1 asynchronous event match unit. To denote a valid match
unit object, the corresponding *_valid field should contain a non-zero value.

Data Match Units

The BeagleUsb3DataMatchUnit should be used to create a data match unit.

 /*Data match unit configuration*/
 struct BeagleUsb3DataMatchUnit {
 BeagleUsb3PacketType packet_type;
 u16 data_length;
 u08 * data;
 u16 data_valid_length;
 u08 * data_valid;
 BeagleUsb3ErrorType err_match;
 u08 data_properties_valid;
 BeagleUsb3DataProperties data_properties;
 BeagleUsb3MatchModifier match_modifier;
 u16 repeat_count;
 u08 sticky_action;
 u08 action_mask;
 08 goto_selector;
 };

Table 62 : BeagleUsb3DataMatchUnit field descriptions

packet_type The type of packet to be matched

data_length Length of the data array

data Byte array of data on which to match

data_valid_length Length of the data valid array

Beagle Protocol Analyzer User Manual

186

data_valid Array specifying which bytes in the data
array are valid (non-zero) and which are
dont cares (zero)

err_match Dictates which CRC/error conditions must
be valid or invalid for a match. Options are
listed in Table 64

data_properties_valid data_properties is valid

data_properties Specific match information for supplied data

match_modifier Modify the matching criteria

The BeagleUsb3PacketType enumerated type is used in data match units to
denote which type of packet to be matched. The different enumerated types are
described in the Table 63.

Table 63 : BeagleUsb3PacketType enumerated values

BG_USB3_MATCH_PACKET_SLC Match link command packets

BG_USB3_MATCH_PACKET_SHP Match header packets

BG_USB3_MATCH_PACKET_SDP Match data packets

BG_USB3_MATCH_PACKET_SHP_SDP Match qualified data packets

BG_USB3_MATCH_PACKET_TSX Match TS1 or TS2

BG_USB3_MATCH_PACKET_TSEQ Match TSEQ

BG_USB3_MATCH_PACKET_ERROR Match on various bit corruptions

BG_USB3_MATCH_PACKET_5GBIT_START Match start of 5 Gb transmission

BG_USB3_MATCH_PACKET_5GBIT_STOP Match exit from 5 Gb transmission

The BeagleUsb3ErrorType enumerated type is used differently depending on the
match packet type that is configured. In situations where the packet type is an SLC,
SHP, SDP, or SHP_SDP, this field defines the type of CRC condition which is
intended to be matched. The various options include looking for failing and passing
CRC conditions in each of the CRC slots. CRC_1 describes the first CRC slot of the
packet, while CRC_2 describes the second CRC slot of the packet. Since Data
Packet Payloads do not have a second CRC slot, this field is instead used to
indicate whether or not the packet ended with an END framing or an EDB framing. A
passing CRC_2 describes an END framing, while a failing CRC_2 describes an EDB
framing. Please see Table 64 and Table 65 for more information.

When the match packet type is ERROR, the BeagleUsb3ErrorType value is
actually used as a bitmask to test for various bit corruptions. The possible errors to
test for are CRC errors, framing errors (a single corrupted symbol in the framing),
and unknown packets. By masking these bits together on an ERROR packet type,
multiple error conditions can be matched with a single match unit.

Beagle Protocol Analyzer User Manual

187

The BeagleUsb3ErrorType value is not valid for any other packet type.

Table 64 : BeagleUsb3ErrorType enumerated values

When using SLC, SHP, SDP, SHP_SDP Packet Types

BG_USB3_MATCH_CRC_DONT_CARE Both CRCs may be valid or fail

BG_USB3_MATCH_CRC_1_VALID First CRC must be valid

BG_USB3_MATCH_CRC_2_VALID Second CRC must be valid

BG_USB3_MATCH_CRC_BOTH_VALID Both CRCs must be valid

BG_USB3_MATCH_CRC_EITHER_FAIL Either CRC must fail

BG_USB3_MATCH_CRC_1_FAIL First CRC must fail

BG_USB3_MATCH_CRC_2_FAIL Second CRC must fail

BG_USB3_MATCH_CRC_BOTH_FAIL Both CRCs must fail

When using ERROR Packet Type

BG_USB3_MATCH_ERR_MASK_CRC Any CRC failure

BG_USB3_MATCH_ERR_MASK_FRAMING Any framing error

BG_USB3_MATCH_ERR_MASK_UNKNOWN Any unknown packet

Table 65 : CRC_1 and CRC_2 Descriptions

CRC_1 CRC_2

Link Command First CRC-5 Second CRC-5

Header Packet Header CRC-16 Link Control Word CRC-5

Data Packet Payload Data CRC-32 END/EDB Framing

 /*Data properties configuration*/
 struct BeagleUsb3DataProperties {
 BeagleUsbMatchType source_match_type;
 BeagleUsbSource source_match_val;
 BeagleUsbMatchType ep_match_type;
 u08 ep_match_val;
 BeagleUsbMatchType dev_match_type;
 u08 dev_match_val;
 BeagleUsbMatchType stream_id_match_type;
 u16 stream_id_match_val;
 BeagleUsbMatchType data_len_match_type;
 u16 data_len_match_val;
 };

Beagle Protocol Analyzer User Manual

188

The BeagleUsbMatchType enumerated type is used in data property objects to
determine whether a match field should assert on the values being equal, greater or
equal, less or equal, or dont care (disabled). The different enumerated types are
listed below. Restrictions on usage are indicated by footnotes.

• BG_USB_MATCH_TYPE_DISABLED

• BG_USB_MATCH_TYPE_EQUAL

• BG_USB_MATCH_TYPE_LESS_EQUAL (4)

• BG_USB_MATCH_TYPE_GREATER_EQUAL (4)

(4) Only valid when used in the data_len_match_type field

The BeagleUsbSource enumerated type is used only in the source_match_val
field. The enumerated types are listed in Table 30.

Fields ep_match_val, dev_match_val, and data_len_match_val allow any
value, subject to unsigned integer range limitations.

The match_modifier gives the ability to modify the polarity of the matching
conditions. The available match modifiers are described in Table 66. If any feature is
disabled (i.e. the data_length or data_properties_valid is 0), then that part
of the match will always evaluate to true, and then be modified by the
match_modifier.

Table 66 : BeagleUsb3DataMatchModifier enumerated values

BG_USB3_MATCH_MODIFIER_0 TYPE & Pattern & Data Property

BG_USB3_MATCH_MODIFIER_1 TYPE & !(Pattern & Data Property)

BG_USB3_MATCH_MODIFIER_2 !(TYPE & Pattern & Data Property)

BG_USB3_MATCH_MODIFIER_3 TYPE & !Pattern & Data Property

Resource Limitations

Due to internal optimizations and constraints, certain resource limitations apply to
data match units. The total data memory space (shared across all states) available
is 3072 bytes per stream (upstream, downstream). The maximum allowable length
of any data array in a single data match unit is 1024 (bytes).

Beagle Protocol Analyzer User Manual

189

Additional restrictions on data properties objects apply. As a result, when data
properties are specified (non-zero data_properties_valid), the total available
memory per stream may be less than the 3072 bytes mentioned above.

Timer Match Units

The BeagleUsb3TimerMatchUnit should be used to create a timer match unit.

 /*Timer match unit configuration*/
 struct
 BeagleUsb3TimerMatchUnit {
 BeagleUsbTimerUnit timer_unit;
 u32 timer_val;
 u08 action_mask;
 u08 goto_selector;
 };

The BeagleUsbTimerUnit enumerated type is used to define the unit of time for
the timer_val field. The different enumerated types are described in Table 67.

Table 67 : BeagleUsbTimerUnit enumerated values

BG_USB_TIMER_UNIT_DISABLED The timer is disabled

BG_USB_TIMER_UNIT_NS The timer value is in ns

BG_USB_TIMER_UNIT_US The timer value is in us

BG_USB_TIMER_UNIT_MS The timer value is in ms

BG_USB_TIMER_UNIT_SEC The timer value is in seconds

The validity of timer_val depends on the selected units. The timer must be at
least 8 ns and at most 34.36 sec.

Asynchronous Event Match Units

The BeagleUsb3AsyncEventMatchUnit should be used to create an
asynchronous event match unit.

 /*Timer match unit configuration*/
 struct BeagleUsb3AsyncEventMatchUnit {
 BeagleUsb3AsyncEventType event_type;
 u08 edge_mask;
 u16 repeat_count;

Beagle Protocol Analyzer User Manual

190

 u08 sticky_action;
 u08 action_mask;
 u08 goto_selector;
 };

The BeagleUsb3AsyncEventType enumerated type is used to define the event
type to match on. The different enumerated types are listed below. Restrictions on
edge_mask are based on the selected event_type and are indicated by
footnotes.

• BG_USB3_COMPLEX_MATCH_EVENT_SSTX_LFPS

• BG_USB3_COMPLEX_MATCH_EVENT_SSTX_POLARITY (5)

• BG_USB3_COMPLEX_MATCH_EVENT_SSTX_DETECTED

• BG_USB3_COMPLEX_MATCH_EVENT_SSTX_SCRAMBL (5)

• BG_USB3_COMPLEX_MATCH_EVENT_SSRX_LFPS

• BG_USB3_COMPLEX_MATCH_EVENT_SSRX_POLARITY (5)

• BG_USB3_COMPLEX_MATCH_EVENT_SSRX_DETECTED

• BG_USB3_COMPLEX_MATCH_EVENT_SSRX_SCRAMBL (5)

• BG_USB3_COMPLEX_MATCH_EVENT_VBUS_INRUSH

• BG_USB3_COMPLEX_MATCH_EVENT_VBUS_PRESENT

• BG_USB3_COMPLEX_MATCH_EVENT_SSTX_PHYERR (6)

• BG_USB3_COMPLEX_MATCH_EVENT_SSRX_PHYERR (6)

• BG_USB3_COMPLEX_MATCH_EVENT_SMA_EXTIN

The edge_mask field is a bitmask that specifies the event edge on which to trigger.
Zero or more of the following constants may be used.

• BG_USB_EDGE_RISING

• BG_USB_EDGE_PULSE

• BG_USB_EDGE_FALLING

(5) For the sake of clarity, bits BG_USB_EDGE_RISING and
BG_USB_EDGE_FALLING must both be set in the event edge_mask, as the
analyzer will always match on either edge for these event types

Beagle Protocol Analyzer User Manual

191

(6) Only bit BG_USB_EDGE_PULSE should be set in the event edge_mask

Match Actions

Each match unit can perform certain actions on a match event.

Table 68 : Match unit action field descriptions

repeat_count The number of repeated matches (after the first match)
that must occur before a match action is executed

sticky_action A non-zero value will cause actions (other than goto) to
be repeatedly executed while the number of repeated
actions is less than or equal to repeat_count

action_mask A bitmask of the action(s) that will be taken if a match
situation occurs

goto_selector The goto_N field from the complex match state object
(not the destination state) to use for the goto action (Valid
values: 0, 1, 2)

The action_mask field can contain zero or more of the following actions:

• BG_USB_COMPLEX_TRIGGER_ACTION_EXTOUT

• BG_USB_COMPLEX_TRIGGER_ACTION_TRIGGER

• BG_USB_COMPLEX_TRIGGER_ACTION_FILTER (7)

• BG_USB_COMPLEX_TRIGGER_ACTION_GOTO

(7) Only valid in packet-based data match units (not in timer or asynchronous event
match units)

Configure Matching (bg_usb3_complex_match_config_single)

 int bg_usb3_complex_match_config_single (
 Beagle beagle,
 u08 validate,
 u08 extout,
 BeagleUsb3ComplexMatchState *state);

Configure the USB 3.0 complex matching system for triggering.

Arguments

Beagle Protocol Analyzer User Manual

192

beagle handle of a Beagle analyzer

validate validate a configuration state without actually
programming the Beagle analyzer

extout enable EXTOUT assertion on complex match

state data, timer and async match units corresponding to the
initial state

Specific Error Codes

BG_FUNCTION_NOT_AVAILABLE Function not supported by device.

Details

Same as bg_usb3_complex_match_config, except that only one state can be
provided. This is a convenience function for users that can or want to only use one
state. This function will configure state 0, and clear all others.

See Section 6.8.5.9 for more details.

Enable Complex Matching (bg_usb3_complex_match_enable)

 int bg_usb3_complex_match_enable (Beagle beagle);

Enable the USB 3.0 complex matching system.

Arguments

beagle handle of a Beagle analyzer

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

None.

Details

Complex matching must first be configured in bg_usb3_complex_match_config
before it can be enabled.

Disable Complex Matching (bg_usb3_complex_match_disable)

 int bg_usb3_complex_match_disable (Beagle beagle);

Beagle Protocol Analyzer User Manual

193

Disable the USB 3.0 complex matching system.

Arguments

beagle handle of a Beagle analyzer

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

None.

Details

Since complex matching only requires a single configuration, complex matching can
be re-enabled without reconfiguration after being disabled.

Test Memory (bg_usb3_memory_test)

 int bg_usb3_memory_test (
 Beagle beagle,
 BeagleUsb3MemoryTestType test);

Test the USB 3.0 capture buffer hardware.

Arguments

beagle handle of a Beagle analyzer

test an enumerated value which determines what kind of memory
test is run, as specified in Table 69

Table 69 : BeagleUsbMemoryTestType enumerated values

BG_USB_MEMORY_TEST_FAST Fast memory test

BG_USB_MEMORY_TEST_FULL Thorough memory test

BG_USB_MEMORY_TEST_SKIP Memory test not performed

Return Value

This function returns a memory test result listed in Table 54 or a negative value
indicating an error.

Specific Error Codes

None.

Beagle Protocol Analyzer User Manual

194

Details

This function is used to verify that the USB 3.0 circular buffer hardware is
functioning properly. Please contact Total Phase if this function ever returns
BG_USB_MEMORY_TEST_FAIL.

6.8.6 USB 5000 Monitor Interface

Configure USB 5000 Cross-Analyzer Sync (bg5000_cross_analyzer_sync_configure)

 int bg5000_cross_analyzer_sync_config (
 Beagle beagle,
 Beagle5000CrossAnalyzerSyncMode cross_sync_mode,
 Beaglb5000CrossAnalyzerMode cross_trigger_mode,
 Beagsb5000CrossAnalyzerMode cross_stop_mode);

Configure Cross-Analyzer Sync.

Arguments

beagle handle of a Beagle analyzer

cross_sync_mode enumerated value (Table 70) that can
enable or disable the Cross-Analyzer Sync
feature

cross_trigger_mode enumerated value (Table 71) that
configures the Cross-Analyzer Trigger
feature

cross_stop_mode enumerated value (Table 71) that
configures the Cross-Analyzer Stop feature

Table 70 : Beagle5000CrossAnalyzerSyncMode enumerated values

BG5000_CROSS_ANALYZER_SYNC_WAIT Wait for all analyzers connected by
Cross-Analyzer Sync to start before
proceeding with capture.

BG5000_CROSS_ANALYZER_SYNC_BYPASS Bypass the Cross-Analyzer Sync
feature, proceeding with capture
immediately after start.

Table 71 : Beagle5000CrossAnalyzerMode enumerated values

Beagle Protocol Analyzer User Manual

195

BG5000_CROSS_ANALYZER_ACCEPT Allow / honor Cross-Analyzer signal
from connected analyzers.

BG5000_CROSS_ANALYZER_IGNORE Reject / ignore Cross-Analyzer signal
from connected analyzers.

Return Value

This function returns BG_OK or a negative value indicating an error.

Specific Error Codes

BG_CONFIG_ERROR An attempt was made to configure
the Beagle with invalid settings.

BG_FUNCTION_NOT_AVAILABLE The Beagle analyzer being
configured is not licensed to use
the Cross-Analyzer Sync feature.

Details

This function can only be used with a Beagle 5000 v2.00 or later analyzer licensed
to use Cross-Analyzer Sync.

When BG5000_CROSS_ANALYZER_SYNC_BYPASS is used to completely bypass
the Cross-Analyzer Sync feature, the analyzer will no longer accept any Cross-
Analyzer trigger or stop signals, nor will the analyzer output trigger or stop signals to
other analyzers.

Using BG5000_CROSS_ANALYZER_IGNORE to ignore a Cross-Analyzer trigger or
stop signal will not affect the output of that signal by the analyzer. If the analyzer is
participating in Cross-Analyzer Sync, the trigger and stop signals will be outputted,
even if one or both of those signals is being ignored on input.

Release from USB 5000 Cross-Analyzer Sync (bg5000_cross_analyzer_sync_release)

 int bg5000_cross_analyzer_sync_release (Beagle beagle);

Release the analyzer from Cross-Analyzer Sync for the remainder of the current capture.

Arguments

beagle handle of a Beagle analyzer

Return Value

This function returns BG_OK or a negative value indicating an error.

Beagle Protocol Analyzer User Manual

196

Specific Error Codes

BG_FUNCTION_NOT_AVAILABLE The Beagle analyzer being
configured is not licensed to use
the Cross-Analyzer Sync feature.

BG_USB_NOT_ENABLED Capture has not been enabled.

Details

This function can only be used with a Beagle 5000 v2.00 or later analyzer licensed
to use Cross-Analyzer Sync.

This function releases the analyzer from Cross-Analyzer Sync in the same way as
function bg5000_cross_analyzer_sync_config called with
BG5000_CROSS_ANALYZER_ SYNC_BYPASS. The latter function is only available
before capture starts, while this function is only available during capture.

Unlike bg5000_cross_analyzer_sync_config, changes to Cross-Analyzer
Sync made by this function do not persist across captures only the current capture
is affected.

When an analyzer is released from Cross-Analyzer Sync, the analyzer will no longer
accept any Cross-Analyzer trigger or stop signals, nor will the analyzer output
trigger or stop signals to other analyzers.

6.9 MDIO API

6.9.1 Notes

The MDIO API functions are only available for the Beagle I C/SPI/MDIO Protocol
Analyzer.

6.9.2 MDIO Monitor Interface

Read MDIO (bg_mdio_read)

 int bg_mdio_read (Beagle beagle,
 u32 * status,
 u64 * time_sop,
 u64 * time_duration,
 u32 * time_dataoffset,
 u32 * data_in);

Beagle Protocol Analyzer User Manual

2

197

Read data from the MDIO port.

Arguments

beagle handle of a Beagle analyzer

status filled with the status bitmask as detailed in
Table 11

time_sop filled with the timestamp when the frame
preamble begins

time_duration filled with the number of ticks that from
time_sop to the last bit of the MDIO frame

time_dataoffset filled with the number of ticks from time_sop
until the end of the preamble

data_in a pointer to a u32 value which is filled with the
received MDIO data

Return Value

This function returns the number of bytes read or a negative value indicating an
error.

Specific Error Codes

None.

Details

The function will block until a complete frame is captured or the bus is idle for longer
than the timeout interval set. See Section 6.4.1.12 for information on the
bg_latency() and bg_timeout() functions which affect the behavior of this
function.

All of the timing data is measured in ticks of the sample clock.

Read MDIO with bit-level timing (bg_mdio_read_bit_timing)

 int bg_mdio_read_bit_timing (Beagle beagle,
 u32 * status,
 u64 * time_sop,
 u64 * time_duration,
 u32 * time_dataoffset,
 u32 * data_in int max_timing,
 u32 * bit_timing);

Read data from the MDIO port.

Arguments

Beagle Protocol Analyzer User Manual

198

common_args see bg_mdio_read() for common arguments

max_timing size of bit_timing array

bit_timing an allocated array of u32 which is filled with the timing
data for each bit read

Return Value

This function returns the number of bytes read or a negative value indicating an
error.

Specific Error Codes

None.

Details

This function is an extension of the bg_mdio_read() function with the added
feature of bit-level timing. All of the bg_mdio_read() arguments and details apply.

The values in the bit_timing array give the offset of each bit from time_sop.

The bit_timing array should be allocated at least as large as max_timing. Use
the function bg_bit_timing_size() (in Section 6.4.3.4) to determine how large
an array to allocate for bit_timing.

The bit time for the final bit of the frame is always zero. This is due to the fact that
the bit times are measured between rising edges of the MDC line. The first bit time
is measured from the first rising edge of the MDC line to the next rising edge. For
the last bit of a frame, there may not be a subsequent rising edge of the MDC line
until the next frame. Therefore, no bit time value can be determined for final bit of a
frame.

Parse MDIO data (bg_mdio_parse)

 int bg_mdio_parse (u32 packet,
 u08 * clause,
 u08 * opcode,
 u08 * addr1,
 u08 * addr2,
 u16 * data);

Parses packet into field values.

Arguments

packet the MDIO frame to parse

Beagle Protocol Analyzer User Manual

199

clause filled with the clause of the frame as detailed in Table 72

opcode filled with the OP code of the frame as detailed in Table 73

addr1 filled with the value of the first address field (PHY in
Clause 22, port in Clause 45)

addr2 filled with the value of the second address field (reg in
Clause 22, device in Clause 45)

data filled with the contents of the data portion of the frame

Table 72 : MDIO Clause definitions

BG_MDIO_CLAUSE_22 0x00 MDIO Clause 22

BG_MDIO_CLAUSE_45 0x01 MDIO Clause 45

BG_MDIO_CLAUSE_ERROR 0x02 Unknown value in clause field

Table 73 : MDIO Opcode definitions

BG_MDIO_OPCODE22_WRITE 0x01 Clause 22 write OP code

BG_MDIO_OPCODE22_READ 0x02 Clause 22 read OP code

BG_MDIO_OPCODE22_ERROR 0xff Clause 22 unknown OP code

BG_MDIO_OPCODE45_ADDR 0x00 Clause 45 address OP code

BG_MDIO_OPCODE45_WRITE 0x01 Clause 45 write OP code

BG_MDIO_OPCODE45_READ_POSTINC 0x02 Clause 45 post read increment address OP code

BG_MDIO_OPCODE45_READ 0x03 Clause 45 read OP code

Return Value

A Beagle status code of BG_OK is returned on success or an error code as detailed
in Table 74.

Specific Error Codes

BG_MDIO_BAD_TURNAROUND An unexpected value in
turnaround field of the frame.

Details

The return value will indicate validity of the turnaround field. BG_OK indicates the
value of the turnaround field is valid. BG_MDIO_BAD_TURNAROUND indicates an
invalid value in the turnaround field.

Beagle Protocol Analyzer User Manual

200

6.10 Current/Voltage Monitoring API

6.10.1 Notes

The Current/Voltage Monitoring API is currently only available for the Beagle USB 480
Power Protocol Analyzer.

6.10.2 Current/Voltage Monitoring Interface

Read Current/Voltage Monitoring data (bg_usb_read)

Current/Voltage Monitoring data are delivered in the same data stream as USB records.
The capture must be first configured by calling bg_usb_configure() with
BG_USB_CAPTURE_IV_MON_LITE and BG_USB_CAPTURE_USB2. Packets of
BeagleUSBSource = BG_USB_SOURCE_IV_MON can then be passed to
bg_iv_mon_parse() to be parsed into voltage and current values. There is no
separate API for reading current/voltage monitoring data only. See section 6.8.3.6 for the
interface of bg_usb_read().

Parse Current/Voltage Monitoring data (bg_iv_mon_parse)

 int bg_iv_mon_parse (int length,
 u08 * packet,
 f32 * voltage,
 f32 * current);

Parses packet into voltage and current values.

Arguments

packet from bg_usb_read() when BeagleUSBSource is
BG_USB_SOURCE_IV_MON

length from bg_usb_read() when BeagleUSBSource is
BG_USB_SOURCE_IV_MON

voltage filled with the voltage value captured in the packet

current filled with the current value captured in the packet

Return Value

A Beagle status code of BG_OK is returned on success or an error code as detailed
in Table 74.

Specific Error Codes

Beagle Protocol Analyzer User Manual

201

BG_IV_MON_NULL_PACKET packet is NULL or
length is 0.

BG_IV_MON_INVALID_PAKCET_LENGTH length too small to be
a valid current/voltage
monitor packet.

Details

FVoltage is returned in units of Volts (V) and current in Amperes (A).

6.11 Error Codes

Table 74 : Beagle API Error Codes

Literal Name Value bg_status_string() return
value

BG_OK 0 ok

BG_UNABLE_TO_LOAD_LIBRARY -1 unable to load library

BG_UNABLE_TO_LOAD_DRIVER -2 unable to load usb driver

BG_UNABLE_TO_LOAD_FUNCTION -3 unable to load function

BG_INCOMPATIBLE_LIBRARY -4 incompatible library version

BG_INCOMPATIBLE_DEVICE -5 incompatible device version

BG_INCOMPATIBLE_DRIVER -6 incompatible driver version

BG_COMMUNICATION_ERROR -7 communication error

BG_UNABLE_TO_OPEN -8 unable to open device

BG_UNABLE_TO_CLOSE -9 unable to close device

BG_INVALID_HANDLE -10 invalid device handle

BG_CONFIG_ERROR -11 configuration error

BG_UNKNOWN_PROTOCOL -12 unknown beagle protocol

BG_STILL_ACTIVE -13 beagle still active

BG_FUNCTION_NOT_AVAILABLE -14 beagle function not available

BG_CAPTURE_NOT_TRIGGERED -15 capture not yet triggered

BG_INVALID_LICENSE -16 invalid license detected

BG_COMMTEST_NOT_AVAILABLE -100 comm test feature not
available

BG_COMMTEST_NOT_ENABLED -101 comm test not enabled

Beagle Protocol Analyzer User Manual

202

BG_I2C_NOT_AVAILABLE -200 i2c feature not available

BG_I2C_NOT_ENABLED -201 i2c not enabled

BG_SPI_NOT_AVAILABLE -300 spi feature not available

BG_SPI_NOT_ENABLED -301 spi not enabled

BG_USB_NOT_AVAILABLE -400 usb feature not available

BG_USB_NOT_ENABLED -401 usb not enabled

BG_USB2_NOT_ENABLED -402 usb 2.0 capture no enabled

BG_USB3_NOT_ENABLED -403 USB 3.0 capture no enabled

BG_CROSS_ANALYZER_SYNC_DISTURBED_RE_ENABLE -410 cross-analyzer sync
disturbed, re-enable capture

BG_CROSS_ANALYZER_SYNC_DISTURBED_RECONNECT -411 cross-analyzer sync
disturbed, reconnect to
analyzer

BG_MDIO_NOT_AVAILABLE -500 mdio feature not available

BG_MDIO_NOT_ENABLED -501 mdio not enabled

BG_MDIO_BAD_TURNAROUND -502 mdio bad turnaround field

BG_IV_MON_NULL_PACKET -600 null packet or length to
bg_iv_mon_parse()

BG_IV_MON_INVALID_PACKET_LENGTH -601 packet length to
bg_iv_mon_parse() too small

Beagle Protocol Analyzer User Manual

203

7 Legal / Contact

7.1 Disclaimer

All of the software and documentation provided in this datasheet, is copyright Total
Phase, Inc. ("Total Phase"). License is granted to the user to freely use and distribute
the software and documentation in complete and unaltered form, provided that the
purpose is to use or evaluate Total Phase products. Distribution rights do not include
public posting or mirroring on Internet websites. Only a link to the Total Phase download
area can be provided on such public websites.

Total Phase shall in no event be liable to any party for direct, indirect, special, general,
incidental, or consequential damages arising from the use of its site, the software or
documentation downloaded from its site, or any derivative works thereof, even if Total
Phase or distributors have been advised of the possibility of such damage. The software,
its documentation, and any derivative works is provided on an "as-is" basis, and thus
comes with absolutely no warranty, either express or implied. This disclaimer includes,
but is not limited to, implied warranties of merchantability, fitness for any particular
purpose, and non-infringement. Total Phase and distributors have no obligation to
provide maintenance, support, or updates.

Information in this document is subject to change without notice and should not be
construed as a commitment by Total Phase. While the information contained herein is
believed to be accurate, Total Phase assumes no responsibility for any errors and/or
omissions that may appear in this document.

7.2 Life Support Equipment Policy

Total Phase products are not authorized for use in life support devices or systems. Life
support devices or systems include, but are not limited to, surgical implants, medical
systems, and other safety-critical systems in which failure of a Total Phase product could
cause personal injury or loss of life. Should a Total Phase product be used in such an
unauthorized manner, Buyer agrees to indemnify and hold harmless Total Phase, its
officers, employees, affiliates, and distributors from any and all claims arising from such
use, even if such claim alleges that Total Phase was negligent in the design or
manufacture of its product.

7.3 Contact Information

Total Phase can be found on the Internet at http://www.totalphase.com/. If you have
support-related questions, please email the product engineers at
support@totalphase.com. For sales inquiries, please contact sales@totalphase.com.

Beagle Protocol Analyzer User Manual

204

http://www.totalphase.com/
mailto:support@totalphase.com
mailto:sales@totalphase.com

©2005-2013 Total Phase, Inc. All rights reserved. The Total Phase name and logo and
all product names and logos are trademarks of Total Phase, Inc. All other trademarks

and service marks are the property of their respective owners.

Beagle Protocol Analyzer User Manual

205

	Beagle™ Protocol Analyzers
	1 General Overview
	1.1 USB Background
	1.1.1 USB History
	1.1.2 Architectural Overview
	USB 2.0 Specific Architecture
	USB 3.0 Specific Architecture

	1.1.3 Theory of Operations
	USB 2.0 Connectors
	USB 3.0 Connectors
	USB 2.0 Signaling
	USB 3.0 Signaling
	Bus Speed
	Endpoints and Pipes
	USB 2.0 Packets
	USB 3.0 Packets
	Enumeration and Descriptors
	Device Class
	On-The-Go (OTG)

	1.1.4 References

	1.2 I2C Background
	1.2.1 I2C History
	1.2.2 I2C Theory of Operation
	1.2.3 I2C Features
	1.2.4 I2C Benefits and Drawbacks
	1.2.5 I2C References

	1.3 SPI Background
	1.3.1 SPI History
	1.3.2 SPI Theory of Operation
	1.3.3 SPI Modes
	1.3.4 SPI Benefits and Drawbacks
	1.3.5 SPI References

	1.4 MDIO Background
	1.4.1 MDIO History
	1.4.2 MDIO Theory of Operation
	1.4.3 Clause 22
	1.4.4 Clause 45
	1.4.5 MDIO References

	2 Hardware Specifications
	2.1 Beagle USB 5000 SuperSpeed Protocol Analyzer v2
	2.1.1 Front Panel
	Analyzer Power
	Target Power
	Target Host and Target Device Ports
	Activity Indicators
	External Inputs and Outputs

	2.1.2 Back Panel
	Analysis
	Power
	HDMI Ports

	2.1.3 On-board Buffer
	2.1.4 Active Analog Buffer
	Configurable SuperSpeed Front-End

	2.1.5 Signal Specifications and Power Consumption
	Speed
	ESD Protection
	Power consumption

	2.2 Beagle USB 480 Protocol Analyzer
	2.2.1 Connector Specification
	2.2.2 Digital I/O
	2.2.3 On-board Buffer
	2.2.4 Hardware Filters
	2.2.5 Current/Voltage Monitoring
	2.2.6 VBUS Trigger
	2.2.7 Signal Specifications / Power Consumption
	Speed
	ESD Protection
	Power consumption

	2.3 Beagle USB 12 Protocol Analyzer
	2.3.1 Connector Specification
	2.3.2 Signal Specifications / Power Consumption
	Speed
	ESD protection
	Power consumption

	2.4 Beagle I2C/SPI/MDIO Protocol Analyzer
	2.4.1 Connector Specification
	Orientation
	Order of Leads
	Ground
	I2C Pins
	SPI Pins
	MDIO Pins
	Powering Downstream Devices

	2.4.2 Signal Specifications / Power Consumption
	Speed
	Logic High Levels
	ESD protection
	Power Consumption

	2.5 USB 2.0
	2.6 Temperature Specifications

	3 Device Operation
	3.1 Electrical Connections
	3.1.1 Beagle USB Protocol Analyzers
	3.1.2 Beagle I2C/SPI/MDIO Protocol Analyzer

	3.2 Software Operational Overview
	3.3 Beagle USB 5000 Protocol Analyzer Specifics
	3.3.1 Heat Dissipation
	3.3.2 Receiver Termination Detection
	3.3.3 Polarity Detection
	3.3.4 Data Scrambling Detection
	3.3.5 Digital Inputs
	3.3.6 Digital Output
	3.3.7 Cross-Analyzer Sync
	Overview
	Setup
	Start Capture
	Trigger Capture
	Stop Capture
	Software Release
	Notes

	3.3.8 Match/Action System
	USB 3.0 Matching
	USB 2.0 Matching

	3.3.9 Capture Settings
	Real-time USB 3.0 Capturing
	Capture Modes
	Capture Buffer

	3.3.10 Capture Issues
	Signal Integrity

	3.4 Beagle USB 480 Protocol Analyzer Specifics
	3.4.1 Bus Events
	3.4.2 OTG Events
	3.4.3 Digital Inputs
	3.4.4 Digital Outputs
	3.4.5 Hardware Filtering
	Filters and Digital I/O

	3.4.6 Capture Modes
	Real-time Capture
	Real-time Capture with Overflow Protection
	Delayed-download Capture

	3.4.7 Match/Action System
	USB 2.0 Simple Matching
	USB 2.0 Complex Matching

	3.4.8 Current/Voltage Monitoring
	3.4.9 VBUS Trigger

	3.5 Beagle I2C/SPI/MDIO Protocol Analyzer Specifics
	3.5.1 Sampling Rate

	4 Software
	4.1 Compatibility
	4.1.1 Overview
	4.1.2 Windows Compatibility
	4.1.3 Linux Compatibility
	4.1.4 Mac OS X Compatibility

	4.2 Windows USB Driver
	4.2.1 Driver Installation
	4.2.2 Driver Removal

	4.3 Linux USB Driver
	4.3.1 UDEV
	4.3.2 USB Hotplug
	4.3.3 World-Writable USB Filesystem

	4.4 Mac OS X USB Driver
	4.5 USB Port Assignment
	4.5.1 Detecting Ports

	4.6 Beagle Dynamically Linked Library
	4.6.1 DLL Philosophy
	4.6.2 DLL Location
	4.6.3 DLL Versioning

	4.7 Rosetta Language Bindings: API Integration into Custom Applications
	4.7.1 Overview
	4.7.2 Versioning
	4.7.3 Customizations

	4.8 Application Notes
	4.8.1 Receive Saturation
	4.8.2 Threading

	5 Firmware
	5.1 Philosophy
	5.2 Procedure

	6 API Documentation
	6.1 Introduction
	6.2 General Data Types
	6.3 Notes on Status Codes
	6.4 General
	6.4.1 Interface
	Find Devices (bg_find_devices)
	Find Devices (bg_find_devices_ext)
	Open a Beagle analyzer (bg_open)
	Open a Beagle analyzer (bg_open_ext)
	Close a Beagle analyzer connection (bg_close)
	Get Features (bg_features)
	Get Features by Unique ID (bg_unique_id_to_features)
	Get Port (bg_port)
	Get Unique ID (bg_unique_id)
	Status String (bg_status_string)
	Version (bg_version)
	Capture Latency (bg_latency)
	Timeout Value (bg_timeout)
	Sleep (bg_sleep_ms)
	Target Power (bg_target_power)
	Host Interface Speed (bg_host_ifce_speed)

	6.4.2 Buffering
	Host Buffer Size (bg_host_buffer_size)
	Available Read Buffering (bg_host_buffer_free)
	Used Read Buffering (bg_host_buffer_used)
	Communication Speed Benchmark (bg_commtest)

	6.4.3 Monitoring API
	Enable Monitoring (bg_enable)
	Stop Monitoring (bg_disable)
	Sample Rate (bg_samplerate)
	Bit Timing Size (bg_bit_timing_size)
	Trigger Capture (bg_capture_trigger)
	Wait for Capture to Trigger (bg_capture_trigger_wait)
	Abort Capture (bg_capture_stop)

	6.5 Notes on Protocol-Specific Read Functions
	6.6 I2C API
	6.6.1 Notes
	6.6.2 I2C Monitor Interface
	I2C Pullups (bg_i2c_pullup)
	Read I2C (bg_i2c_read)
	Read I2C with data-level timing (bg_i2c_read_data_timing)
	Read I2C with bit-level timing (bg_i2c_read_bit_timing)

	6.7 SPI API
	6.7.1 Notes
	6.7.2 SPI Monitor Interface
	SPI Configuration (bg_spi_configure)
	Read SPI (bg_spi_read)
	Read SPI with data-level timing (bg_spi_read_data_timing)
	Read SPI with bit-level timing (bg_spi_read_bit_timing)

	6.8 USB API
	6.8.1 Notes
	6.8.2 Using the Beagle USB API
	6.8.3 USB Monitor Interface
	Check Available Features (bg_usb_features)
	Read License Key (bg_usb_license_read)
	Write License Key (bg_usb_license_write)
	Configure USB Capture (bg_usb_configure)
	Configure USB Target Power (bg_usb_target_power)
	Read USB (bg_usb_read)
	Configure Statistics System (bg_usb_stats_config)
	Query Statistics System Configuration (bg_usb_stats_config_query)
	Reset Statistics Counts (bg_usb_stats_reset)
	Read Statistics Counts (bg_usb_stats_read)

	6.8.4 USB Monitor Interface (USB 2.0)
	Configure USB 2.0 Capture (bg_usb2_capture_config)
	Configure Capture (bg_usb2_capture_buffer_config)
	Query Capture Config (bg_usb2_capture_buffer_config_query)
	Configure Target (bg_usb2_target_config)
	Enable Digital Output (bg_usb2_digital_out_config)
	Match Digital Output (bg_usb2_digital_out_match)
	Enable USB 2.0 Digital Input (bg_usb2_digital_in_config)
	Enable Simple Matching (bg_usb2_simple_match_config)
	Enable Hardware Filter (bg_usb2_hw_filter_config)
	Configure External Output (bg_usb2_extout_config)
	Configure Complex Matching (bg_usb2_complex_match_config)
	Configure Matching (bg_usb2_complex_match_config_single)
	Enable Complex Matching (bg_usb2_complex_match_enable)
	Disable Complex Matching (bg_usb2_complex_match_disable)
	Query Capture Status (bg_usb2_capture_status)
	Read USB 2.0 (bg_usb2_read)
	Read USB 2.0 with data-level timing (bg_usb2_read_data_timing)
	Read USB 2.0 with bit-level timing bg_usb2_read_bit_timing)
	Reconstruct Bit Timing (bg_usb2_reconstruct_timing)
	Read USB 2.0 Statistics Counts (bg_usb2_stats_read)
	Test Memory (bg_usb2_memory_test)

	6.8.5 USB Monitor Interface (USB 3.0)
	Configure PHY (bg_usb3_phy_config)
	Configure Link (bg_usb3_link_config)
	Configure Capture (bg_usb3_capture_buffer_config)
	Query Capture Config (bg_usb3_capture_buffer_config_query)
	Query Capture Status (bg_usb3_capture_status)
	Capture Data Truncation (bg_usb3_truncation_mode)
	Enable External I/O (bg_usb3_ext_io_config)
	Enable Simple Matching (bg_usb3_simple_match_config)
	Configure Complex Matching (bg_usb3_complex_match_config)
	Configure Matching (bg_usb3_complex_match_config_single)
	Enable Complex Matching (bg_usb3_complex_match_enable)
	Disable Complex Matching (bg_usb3_complex_match_disable)
	Test Memory (bg_usb3_memory_test)

	6.8.6 USB 5000 Monitor Interface
	Configure USB 5000 Cross-Analyzer Sync (bg5000_cross_analyzer_sync_configure)
	Release from USB 5000 Cross-Analyzer Sync (bg5000_cross_analyzer_sync_release)

	6.9 MDIO API
	6.9.1 Notes
	6.9.2 MDIO Monitor Interface
	Read MDIO (bg_mdio_read)
	Read MDIO with bit-level timing (bg_mdio_read_bit_timing)
	Parse MDIO data (bg_mdio_parse)

	6.10 Current/Voltage Monitoring API
	6.10.1 Notes
	6.10.2 Current/Voltage Monitoring Interface
	Read Current/Voltage Monitoring data (bg_usb_read)
	Parse Current/Voltage Monitoring data (bg_iv_mon_parse)

	6.11 Error Codes

	7 Legal / Contact
	7.1 Disclaimer
	7.2 Life Support Equipment Policy
	7.3 Contact Information

